

Improving Quality Using Architecture
Fault Analysis with Confidence
Arguments

Peter H. Feiler
Charles B. Weinstock
John B. Goodenough
Julien Delange
Ari Z. Klein
Neil Ernst

March 2015

TECHNICAL REPORT
CMU/SEI-2015-TR-006

Software Solutions Division

http://www.sei.cmu.edu

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-
low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0002230

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

Table of Contents

Abstract vii

 Introduction 1

 Approach, Concepts, and Notations 5
2.1 Requirement Specification and Architecture Design 5
2.2 AADL Concepts Supporting Architecture Design 8
2.3 Architecture Fault Modeling and Analysis with EMV2 8
2.4 Confidence Map Concepts and Notation 11

 Overview of the Stepper-Motor System 14

 An AADL Model of the SMS Architecture 16
4.1 The Operational Environment and Interface Specification of the SMS 16
4.2 The SMS Architecture 19

4.2.1 The Position Control System Specification 20
4.2.2 The Actuator Specification 21
4.2.3 The Stepper-Motor Specification 22

4.3 SMS Functional Design as State and Behavior 23
4.3.1 The Position Control System State and Behavior 23
4.3.2 The Actuator State and Behavior 25
4.3.3 The Stepper-Motor State and Behavior 26
4.3.4 SMS Design Constraints 26

4.4 Three Proposed Corrections 26
4.4.1 The Fixed Command Send Time Solution 26
4.4.2 The Buffered Position-Change Command Solution 27
4.4.3 The Desired Position Actuator Commanding Solution 27

 Fault Analysis of the SMS Architecture 29
5.1 Hazards and Their Impact on the SMS Architecture 29

5.1.1 The Position Control System SM_PCS Architecture Fault Model 30
5.1.2 The Actuator SM_ACT Architecture Fault Model 31
5.1.3 The Stepper-Motor SM_Motor Architecture Fault Model 33
5.1.4 The Engine Control System ECS Architecture Fault Model 34
5.1.5 The ECU Architecture Fault Model 35
5.1.6 The Direct Access Memory Architecture Fault Model 35
5.1.7 The Power Supply Architecture Fault Model 35
5.1.8 The Fuel-Valve Architecture Fault Model 35
5.1.9 The SMS Architecture Fault Model 36

5.2 Fault Impact Analysis of the Original SMS Architecture 37
5.3 Quantified Time-Sensitive Derived Safety Requirements 39

5.3.1 Derived Requirement for Early Command Delivery 39
5.3.2 Derived Requirement for Rate Mismatch 40
5.3.3 Derived Requirement for Immediate Command Response 41

5.4 Analysis of the Fixed Command Send Time Solution 42
5.5 Analysis of the Buffered Position-Change Command Solution 42
5.6 Analysis of the Position-Commanded Actuator Design Alternative 42
5.7 Comparison of the SMS Designs 43

 Establishing Confidence in the SMS 45
6.1 Confidence Maps for SMS 45

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

6.1.1 The Stepper Motor 45
6.1.2 The Stepper-Motor Position Control System (SM_PCS) 46
6.1.3 Eliminating Defeater R2.3 48
6.1.4 Using the Confidence Map to Allocate Assurance Resources 52

6.2 Confidence in the Position-Commanded (“Alternate”) Design for the Stepper Motor 53
6.2.1 Top Level 53
6.2.2 Using the Confidence Map to Allocate Assurance Resources 54

6.3 Discussion 55
6.3.1 The Effort Needed to Obtain Needed Evidence 56

 Conclusions 59

 The SMS Data Model 61

 Variation in Inter-Arrival Time 63

 Confidence Maps 64

C.1 Other Defeaters from the Original Design 64
C.1.1 Stepper-Motor Malfunction Defeater (Defeater R2.1) 64
C.1.2 Stepper-Motor Speed Defeater (R2.2) 65
C.1.3 The SM_PCS Does Not Issue Appropriate Commands (R2.4) 66

C.2 Other Defeaters from the Position-Commanded Design 70
C.2.1 Stepper-Motor Malfunction Defeater (Defeater R2.1) 70
C.2.2 Stepper-Motor Speed Defeater (R2.2) 71
C.2.3 The SM_PCS Does Not Issue Appropriate Commands (R2.3) 72

References 75

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

List of Figures

Figure 1: Architecture-Centric Requirements Decomposition 5

Figure 2: A System and Its Interface with Its Environment 6

Figure 3: AADL Graphical Symbols 8

Figure 4: Textual AADL Example 8

Figure 5: Textual AADL Error Model Example 9

Figure 6: Potential Hazard Sources in the Feedback Control Loop [Leveson 2012] 11

Figure 7: Confidence Map Example 13

Figure 8: SMS in Its Operational Environment 17

Figure 9: Textual SMS Interface Specification 17

Figure 10: Details of Logical SM_PCS Architecture 19

Figure 11: Textual SM_PCS Interface Specification 20

Figure 12: Actuator SM_ACT Interface Specification 21

Figure 13: Position Control System Behavior Specification 25

Figure 14: Stepper-Motor Actuator Behavior Specification 26

Figure 15: Position-Commanded Actuator Behavior 28

Figure 16: Fault Model Specification of the Position Control System SM_PCS 31

Figure 17: Fault Model Specification of the Actuator SM_ACT 33

Figure 18: Fault Model Specification of the Stepper Motor SM_Motor 34

Figure 19: Fault Model Specification of ECS 34

Figure 20: Fault Model Specification of the Direct Access Memory 35

Figure 21: Fault Model Specification of Fuel Valve 36

Figure 22: Abstracted Fault Model Specification for SMS 37

Figure 23: SMS Variant Specific Fault Information 37

Figure 24: Missing Error Containment Guarantee Specification 38

Figure 25: Fault Impact Report for SMS 38

Figure 26: End-to-End Flow Specification for SMS Commands 41

Figure 27: End-to-End Latency for the Original Design 42

Figure 28: The Top-Level Confidence Map for the Stepper Motor 46

Figure 29: Subdefeaters for Determining SM_PCS Position 48

Figure 30: Eliminating a Defeater Regarding SM Position at Startup 49

Figure 31: Eliminating a Defeater Regarding the Position of the SM at the Start of a Frame 50

Figure 32: Eliminating a Defeater Regarding the Overwriting of the Previous Command 51

Figure 33: Top-Level Claim of the Alternative Design 54

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

Figure 34: The Two Confidence Maps 55

Figure 35: S Steps Cannot Be Completed in Time F 56

Figure 36: Evidence Required for the Two Designs 57

Figure 37: SM_PCS Data Model in AADL 62

Figure 38: Eliminating a Defeater Regarding SM Malfunction 64

Figure 39: Eliminating a Defeater Regarding SM Speed 66

Figure 40: Eliminating a Defeater Regarding the SM_PCS Issuing Appropriate Commands to the
SM 67

Figure 41: The Claim that the SM_PCS Calculates the Command Correctly 68

Figure 42: Eliminating a Defeater Regarding Data Corruption 69

Figure 43: Eliminating a Defeater Regarding SM Malfunction 70

Figure 44: Eliminating a Defeater Regarding Speed of the SM 71

Figure 45: Eliminating a Defeater Regarding the SM_PCS Issuing Appropriate Commands 72

Figure 46: Eliminating a Defeater Regarding the Position Calculation 73

Figure 47: Eliminating a Defeater Regarding Data Corruption 74

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

List of Tables

Table 1: Defeater Types 12

Table 2: Comparison of Architecture Design Alternatives 43

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii

Abstract

This case study shows how an analytical architecture fault-modeling approach can be combined
with confidence arguments to diagnose a time-sensitive design error in a control system and to
provide evidence that proposed changes to the system address the problem. The analytical ap-
proach, based on the SAE Architecture Analysis and Design Language for its well-defined timing
and fault behavior semantics, demonstrates that such hard-to-test errors can be discovered and
corrected early in the lifecycle, thereby reducing rework cost. The case study shows that by com-
bining the analytical approach with confidence maps, we can present a structured argument that
system requirements have been met and problems in the design have been addressed adequately—
increasing our confidence in the system quality. The case study analyzes an aircraft engine control
system that manages fuel flow with a stepper motor. The original design was developed and veri-
fied in a commercial model-based development environment without discovering the potential for
missed step commanding. During system tests, actual fuel flow did not correspond to the desired
fuel flow under certain circumstances. The problem was traced to missed execution of com-
manded steps due to variation in execution time.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

 Introduction

The purpose of this case study is to show how architecture fault modeling and analysis can be
used to diagnose a time-sensitive design error encountered in a control system and to investigate
whether proposed changes to the system address the problem. The analytical approach demon-
strates that such errors, which are notoriously hard to test for, can be discovered and corrected
early in the lifecycle, thereby reducing rework cost. The case study shows that by combining the
analytical approach with confidence maps, we can present a structured argument that system re-
quirements have been met and problems in the design have been addressed adequately—increas-
ing our confidence in the system quality.

In this case study, we investigated a stepper-motor system (SMS) that is part of an aircraft engine
control system that manages fuel flow by adjusting a fuel valve. The baseline design for control-
ling the valve is from an actual system, but we have omitted or changed inessential application-
and manufacturer-specific details. The original design was developed and verified in a model-
based development environment called SCADE,1 and an implementation was tested on actual
equipment.

In some situations, actual fuel flow did not correspond to the desired fuel flow. The problem was
traced to the fact that the stepper motor sometimes did not execute enough steps to achieve the
commanded fuel-valve position. The failure was suspected to be due to execution time jitter in the
stepper-motor control system, which resulted in commands being sent to the actuator at variable
time intervals. The failure was not immediately detectable as there is no direct feedback from the
stepper motor, and the feedback loop of the engine control system does not have sufficient fidelity
to detect single missed steps during executions. For this reason, we focus on the SMS portion of
the engine control system, that is, the stepper motor, its actuator, and the position control system
for the stepper motor.

Two repairs were proposed to correct the problem, but there was limited evidence before testing
that either proposed solution would address the problem of missed steps. Our analytical approach
provides predictive evidence, completed with prototype testing evidence, that the problem is in-
herent in the architecture design of the SMS. The findings regarding the stepper-motor position
control system are applicable not only to the engine control system but also to any system that
uses a stepper motor in an open-loop setting, such as those that control other types of valves,
flaps, rudders, and other mechanical parts.

SCADE is a notation for modeling system behavior using interacting and nested state machines.
While the SCADE tool set is able to verify behavioral aspects of the system specification, it does
not address the time-sensitive nature of this control system implementation. We will demonstrate
that the SAE Architecture Analysis & Design Language (AADL) [SAE 2012] and its Error Model
Annex are effective tools for

 identifying causes and effects of failures (particularly those of a time-sensitive nature

 verifying that proposed system changes address the problem

1 See http://www.esterel-technologies.com/products/scade-suite/ for more information about SCADE.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

SAE AADL is an architecture modeling language specifically designed for software-dependent
systems with well-defined execution and interaction semantics. The Error Model Annex standard
is designed to support fault analysis of AADL models.

We will also demonstrate that a particular architecture decision—namely, the translation of the
desired target position of the stepper motor into a sequence of position-change command by the
stepper-motor controller—becomes a source of avoidable faults. We compare the original archi-
tecture to an alternative architecture design with reduced complexity and present arguments for
increased confidence in the analytical evidence over existing practice and reduced need for evi-
dence for the alternative design.

The approach used in this case study draws on a framework for software assurance and software
quality improvement [Feiler 2012] in support of software-dependent, safety-critical system quali-
fication and certification. Software assurance is defined as “the level of confidence that software
is free from vulnerabilities, either intentionally designed into the software or accidentally inserted
at any time during its life cycle, and that the software functions in the intended manner” [CNSS
2010]. In other words, it assures that a system meets the mission requirements specified for it and
that hazards resulting in non-nominal behavior have been addressed through elimination or by de-
pendability requirements on a fault management architecture.

This definition connects to several key elements of the framework for software assurance and
software quality improvement:

 Analysis of mission and dependability requirements associated with the system architecture:
Studies of software-dependent, safety-critical systems have shown that 80% of all errors are
not discovered until system integration, and 70% or more of those errors are related to re-
quirements and architecture design. Complexity in safety-critical software due to limited ar-
chitecture abstractions is a major contributor to high certification-related rework cost [Dvo-
rak 2009]. Requirements errors fall into the following categories: 33% omission, 24%
incorrect, 21% incomplete, 6.3% ambiguous, 6.1% over specified, 4.7% inconsistent [Hayes
2003]. At the same time, T text, diagram, and table-based requirements documentation and
the use of Microsoft Word and Dynamic Object-Oriented Requirements System (DOORS)
dominate the practice [FAA 2009a].

We draw on a set of requirements engineering practices in the context of an architecture
specification expressed in AADL [SAE 2012], as outlined in the FAA Requirement Engi-
neering Management Handbook [FAA 2009], demonstrated in goal-oriented requirements
engineering (KAOS) [Lamsweerde 2003], and reflected in the draft Requirements Definition
and Analysis Language (RDAL) Annex standard [Blouin 2011]. We also draw on guidance
from the Virtual Upgrade Validation (VUV) method developed by the Software Engineering
Institute (SEI) for modeling and predictive analysis of the impact of system changes on key
quality attributes through the use of AADL [DeNiz 2012].

 Assessment and management of hazards on the safety, reliability, and security of the system:
Traditional statistical reliability engineering methods do not carry over well to software.
Eliminating these software design defects and mitigating residual software defects as hazards
has to be the focus [Feiler 2012a]. Safety analysis requires a systemic approach to identify-
ing contributing hazards rather than a single failure as the root cause of an accident [Leveson
2012].

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

In this case study, we use version 2 (EMV2) of the Error Model Annex [SAE 2006],2 which
supports established safety assessment practices such as SAE ARP 4761 [Delange 2014a].
We draw on two hazard impact analysis methods—Fault Propagation and Transformation
Calculus (FPTC) [Paige 2009] and System Theoretic Process Analysis (STPA) [Leveson
2012]—to systematically identify scenarios leading to contributing hazards from a safety
perspective so they can be eliminated or managed.

 Evidence in the form of architecture design analysis of operational qualities to complement
testing: AADL is a key technology in System Architecture Virtual Integration (SAVI), an
aerospace industry initiative to achieve early discovery of system-level problems through
analysis of integrated architecture models [Redman 2010]. Such architectural analysis can
identify design errors before a system is implemented, thereby reducing high-cost rework
needed when such errors are not discovered until system integration. The feasibility of this
approach was demonstrated on a multi-tier aircraft model [Feiler 2010]. Other applications
of this approach include the analysis of a reference architecture for autonomous space plat-
forms and its instantiation for specific systems [Feiler 2009a] and the predictable integration
of medical devices [Larson 2013].

We use existing analysis supported by AADL, such as end-to-end flow latency analysis, and
augment them with formalized specification of the particular timing-related problem.

 Structured argumentation to assure confidence in the presented evidence: Structured argu-
mentation methods (such as assurance cases [Kelly 1998, GSN 2011, ISO 2011]) explain, in
a reviewable form, how various items of evidence combine to support claims about system
properties. In the form of structured argument used in this report (a confidence map), reasons
for doubting the truth of claims, the validity of evidence, and the soundness of inferences
used in the argument are represented explicitly. As reasons for doubt, called defeaters, are
removed, confidence in system claims increases [Goodenough 2013, Weinstock 2013].

We use the confidence map in developing an argument and in evaluating an argument’s
strengths and weaknesses.

Section 2 discusses the approach taken in this case study based on the above-mentioned frame-
work. It introduces the AADL architecture modeling, the EMV2 fault modeling, and the confi-
dence map notations. Section 3 is a brief overview of the SMS architecture and its essential func-
tional requirements. Section 4 presents the SMS in its operational environment, the architecture of
SMS, and the detailed design specification of each SMS subsystem as an AADL model. In this
section derived requirements on these subsystems are clearly identified and traced to the SMS
system requirements. The original architecture is discussed, as are the two corrective solutions
and the alternative design. In Section 5 we elaborate the architecture model into an architecture
fault model identifying hazards and analyze their system impact. The section also discusses quan-
tified time-sensitive derived (safety) requirements that must be satisfied to eliminate the haz-
ards—as well as analysis and prototype implementation results to diagnose the specific missed-
step problem encountered in the SMS. Section 6 presents a confidence map for the original SMS
architecture as well as for the design alternative. These maps show the evidence and inferences

2 The SAE Error Model Annex EMV2 standard revision, led by one of the authors, will be published in spring

2015.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

needed to eliminate doubts about the adequacy of the SMS design. Finally, Section 7 provides
conclusions. Three appendices provides additional supporting material.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

 Approach, Concepts, and Notations

In this section we present a short introduction to the approach we are taking for this case study.
The approach combines practices for requirements engineering, architecture modeling and analy-
sis, hazard analysis from a safety-critical system perspective, and assurance cases for structured
confidence arguments. Our approach is model based to support tool-based analysis and uses con-
cepts and notations of SAE AADL, the Error Model Annex EMV2, and confidence maps.

2.1 Requirement Specification and Architecture Design

We use AADL to model the system and its operational environment to clearly identify the system
boundary, environmental assumptions, and system requirements. Some requirements for the sys-
tem may need to be refined into verifiable requirements. In the process of developing the next
layer of architecture we decompose system requirements and allocate them to subsystems, illus-
trated in Figure 1. In some cases, a system-level requirement is met when all the sub-requirements
are met. In other cases it is necessary to provide additional evidence at the system level. A collec-
tion of evidence in the form of review, analysis, and test results provides confidence that the re-
quirement is met. Subsets of verification results may be considered sufficient evidence.

Figure 1: Architecture-Centric Requirements Decomposition

An operational system, visualized in Figure 2, is defined as a set of behaviors by execution of
functions to transform input into output using state, respecting constraints/controls, and requiring

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

resources to meet a defined mission in a given environment [AFIS 2010]. The requirements speci-
fication of a system consists of assumptions about the input, the incoming controls, the availabil-
ity of resources, guarantees made by the system on the produced output, requirements on the func-
tions executed in different states, and constraints on the state. Requirements are associated with a
system in four forms:

 requirements on the state and behavior of the system

 assumptions about processing input, control input, and utilized resources

 guarantees about output, control feedback, and resource usage

 constraints on the implementation of the system (i.e., on the interaction between its parts)

Figure 2: A System and Its Interface with Its Environment

Requirements fall into two major categories: mission requirements and dependability require-
ments [Feiler 2012a].

 Mission requirements focus on nominal system operation (i.e., functional, behavioral, and
performance requirements).

 Dependability requirements focus on non-nominal system operation due to failures and other
hazardous conditions (i.e., safety, reliability, and security requirements).

Requirement specification and architecture design of safety-critical systems is an iterative process
in two ways. First, the architecture design is iteratively decomposed into subsystems, as men-
tioned earlier. Second, a nominal set of mission requirements and architecture design are exam-
ined by hazard and fault impact analysis for non-nominal conditions that result in safety and relia-
bility requirements and fault management functionality [McDermid 2007]. The fault management
architecture introduces its own non-nominal conditions that must be addressed iteratively.

In each phase of this approach we argue that the system requirement specification and design have
sufficient quality. We provide rationale for

 sufficient coverage of operational use cases by system requirements and sufficient evidence
of requirement specification completeness and consistency

 sufficient system requirement coverage by subsystem requirements

 sufficient hazard coverage in terms of a fault ontology and their mitigation through safety,
reliability, and security requirements on the fault management architecture

 sufficient evidence of assumption/guarantee contract satisfaction by the system design

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

 sufficient evidence of requirement and constraint satisfaction by the next-level design and
implementation

This approach allows for compositional verification evidence through a combination of type and
consistency checking of AADL models and Error Model specifications to meet standard con-
sistency rules, such as assumptions being met by guarantees, and verification of system specific
requirements and constraints.

To diagnose the problem of missed steps due to the time-sensitive nature of the SMS, we use fault
impact analysis to determine all possible contributors to the step loss and identify those that are
due to SMS design decisions that can be corrected. We then make the proposed corrections and
proposed alternative design changes to the architecture model and update any affected require-
ments and hazard analysis to assess whether they have addressed the problem.

We take advantage of the well-defined execution and interaction semantics in AADL to ab-
stractly, but precisely, specify the runtime behavior of the SMS to diagnose the time-sensitive
failure behavior and evaluate how well proposed solutions address the problem.

The VUV method [DeNiz 2012] provides guidance on how to model a system in AADL by map-
ping particular application system categories (e.g., a control system), into application patterns
(e.g., a feedback loop), representing those patterns in AADL, and identifying relevant operational
quality attributes, and expressing them as AADL properties on software and hardware compo-
nents, connections and deployment bindings, and end-to-end flows. VUV also provides guidance
on how to focus modeling on those aspects of the system that are relevant to the proposed system
change and its effect on quality attributes of interest.

Some requirements are directly reflected in the model, while other requirements represent con-
straints or invariants on system properties or state. We use the RDAL notation to provide a re-
quirement identifier, description, and rationale, as well as traceability to stakeholders, and require-
ment refinement and decomposition for each requirement. In addition, the RDAL requirement
declaration identifies the system or system element to which the requirement applies, as well as
the property in the model that reflects the requirement. For example, guarantees and assumptions
on exchanged data are specified as properties on data types—and requirements on the timing of
the interaction are specified as properties on periodic and aperiodic threads with sampling and
queuing ports. State behavior is modeled by modes, persistent data components, and detailed be-
havior specifications. Invariants and constraints are expressed in the RDAL requirement declara-
tion using a constraint notation (Lute3), which is then used to verify the design. Note that RDAL
supports the association of verification activities with requirement declarations to represent an as-
surance plan.

We model non-nominal conditions by annotating the architecture model with fault behavior using
EMV2. Impact analysis of this architecture fault model leads to a set of assumptions that reflect
the absence of hazards and a set of derived requirement declarations to reflect mitigation of the
presence of hazards.

3 Lute and its extension Resolute are constraint specification notations developed by Rockwell Collins for sup-

porting contract based assurance cases on AADL models.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

2.2 AADL Concepts Supporting Architecture Design

The AADL standard defines a number of component categories with specific semantics: system,
device, bus, processor, memory, virtual bus, virtual processor, process, thread, thread group,
data, subprogram, and subprogram group. AADL also defines a number of component features,
that is, interaction points with other components. These are points for any kind of interaction: bus
access for physical connections between hardware components; ports in the form of a sampling
data port, a queuing event port, and an event data port for queued message communication; data
access for references to shared (global) variables; and feature group for representing collections
of interaction points. Data and event data ports include a specification of the type of data that are
communicated. The interactions between the interaction points are represented by connections.

An AADL thread has properties that indicate whether it has a periodic dispatch based on the clock
or an aperiodic dispatch based on the arrival of events or messages, the period at which it exe-
cutes, the deadline for completion of one execution dispatch, and the best- and worst-case execu-
tion time. The execution and communication timing semantics are key to identifying the potential
for timing errors in the SMS design.

The specification of an AADL component may also include a mode state machine to represent op-
erational modes and flow specifications to model end-to-end flows across a system. These flow
specifications are used in latency analysis to determine the responsiveness of the SMS to com-
mands. Since flow specification is part of the AADL, flow representations are integrated with the
architecture representation and do not require separate models or modeling languages. For com-
plete coverage of AADL, see the AADL book by Feiler and Gluch [Feiler 2012].

AADL has a graphical and textual notation. The graphical symbols for the AADL components
and features used in the SMS model are shown in Figure 3. Their use in specifying the SMS and
its operational environment can be seen in Figure 8. Connections between the features of different
components are shown as lines. The textual representation for the declaration of an AADL device
called Sensor is shown in Figure 4. It specifies that the sensor has a single outgoing data port of
data type Position providing a sampled sensor reading.

Figure 3: AADL Graphical Symbols

device Sensor
features
 SampledPosition: out data port Position;
end Sensor;

Figure 4: Textual AADL Example

2.3 Architecture Fault Modeling and Analysis with EMV2

We use EMV2 to represent and analyze the architecture fault model. EMV2 supports automated
Failure Modes and Effects Analysis (FMEA) and reliability predictions [Hecht 2011] and the fault

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

propagation and transformation calculus (FPTC) for automated safety analysis [Paige 2009].
EMV2 also includes a fault propagation ontology that draws on research in failure mode assump-
tions and assumption coverage [Powell 1992], and on a fault model for redundant distributed sys-
tems [Walter 2003]. For further information on architecture fault modeling with EMV2 see
Delange [Delange 2014, Delange 2014a].

EMV2 allows fault information to be attached to each component specification and implementa-
tion. EMV2 supports architecture fault modeling at three levels of abstraction:

 error propagation: focus on fault sources in a system and their impact on other components
or the operational environment through propagation. It allows for safety analysis in the form
of hazard identification, fault impact analysis, and stochastic fault analysis.

 component error behavior: focus on a system or component fault model identifying faults in
a system (component), their manifestation as failure, the effect of incoming propagations,
and conditions for outgoing propagation. It allows for fault tree analysis of a system stochas-
tic reliability and availability analysis of systems in terms of its components and their inter-
actions.

 composite error behavior: focus on relating the fault model of system components to the ab-
stracted fault model of the system. It allows for scalable compositional fault analysis.

In this case study we will primarily make use of the error propagation specification, in particular
error source, incoming error propagation, and containment specifications reflecting assumptions,
and outgoing error propagation and containment specifications reflecting guarantees.

EMV2 introduces the concept of error type to characterize faults, failures, and propagations. Sets
of error types are organized into error type libraries and are used to annotate error events, error
states, and error propagations.

For example, a valve can have faults of the types Leakage, StuckOpen, and StuckClosed. Error
types can be grouped into type sets. For example the type set ValveErrors may be defined as
{Leakage, StuckOpen, StuckClosed}. Error types can also be placed into a type hierarchy indicat-
ing that the subtypes cannot occur at the same time. For example, EarlyDelivery and LateDelivery
are declared as subtypes of TimingError. By referring to the type set ValveErrors or the type Tim-
ingError we indicate that any of the element types can occur.

Figure 5 illustrates the specification of an outgoing error propagation of type ValueError. The
propagation paths to other components are determined by the connections and software to hard-
ware binding declarations in the AADL model.

device Sensor
features
 SensedPosition: out data port Position;
 annex EMV2 {**
 use types ErrorLibrary;
 error propagations
 SensedPosition : out propagation {ValueError};
 end propagations;
 **};
end Sensor;

Figure 5: Textual AADL Error Model Example

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

EMV2 includes a set of predefined error types as starting point for systematic identification of dif-
ferent types of fault propagations – providing an error propagation ontology based on Powell,
Walter, and Paige [Powell 1992, Walter 2003, Paige 2009]. They fall into four categories: service
related, timing related, value related, and replication related. They are expressed in terms of an
individual service item, a sequence of service items, or the whole service provided by a compo-
nent.

Service-related error types include ServiceOmission (representing failure to provide service items,
such as in a power loss), ServiceCommission (representing service items when not expected, such
as unexpected acceleration), ItemOmission (representing a missing item, such as a lost message),
and ItemCommission (representing an extra item, such as a spurious message). Users can define
aliases for error types (e.g., we will use the alias NoPower for ServiceOmission to characterize the
propagation resulting from a failed power supply).

Value-related errors for individual items are OutOfRange, OutOfBounds, and UndetectableVal-
ueError. The set of these types is referred to as ValueError. Examples of sequence and service-
related value errors are StuckValue and OutOfCalibration.

TimingError for an individual item can be EarlyDelivery and LateDelivery. RateError for a ser-
vice item sequence are LowRate, HighRate, and RateJitter.

ReplicationError occurs in redundant systems and can be AsymmetricTiming,
AsymmetricOmission, and AsymmetricValue. They allow for characterization of errors due to a
Byzantine fault or errors occurring independently on replicated channels.

We make use of the ability to define aliases for these error types to give them more meaningful
names in the context of a specific component. For example, we define the alias MissingCommand
for ItemOmission.

We will use these error propagation types to specify the potential presence or absence of a hazard
for SMS and for each of the SMS components by error propagation and containment declarations
associated with each incoming and outgoing port and other interaction points to other components
—as described in Section 5.1. The ontology and the explicit specification of error propagations
and containments allow us to ensure that we have considered all possible hazards in the analysis.

Finally, we draw on elements of the STPA by Leveson [Leveson 2012] to systematically identify
scenarios leading to contributing hazards from a safety perspective so they can be eliminated or
managed. She uses a feedback loop, shown in Figure 6, as a primary pattern.

The hazards identified in the pattern are represented in EMV2 by error sources and incoming and
outgoing propagations on ports. For example, in the context of the sensor no information maps
into service or item omission, incorrect information maps into value error, and feedback delay
maps into late delivery. The EMV2 ontology suggests a distinction of different types of value er-
rors, as well as consideration for early delivery, sequence, and rate errors.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Figure 6: Potential Hazard Sources in the Feedback Control Loop [Leveson 2012]

2.4 Confidence Map Concepts and Notation

A confidence map is a structure that explicitly shows the reasons for doubt relevant to a particular
argument. A confidence map consists of claims, evidence (data), reasons for doubt (defeaters),
and inference rules explaining

 why evidence or a valid claim serves to eliminate a defeater

 why the elimination of a doubt about the validity of a claim, evidence, or inference rule is
regarded as justifying confidence in the validity of the claim, evidence, or rule

A confidence map is useful both in developing an argument and in evaluating an argument’s
strengths and weaknesses.

A confidence map consists of a connected set of inferences having the form

 if P then Q unless R, S, T, …

The inference if P then Q is defeasible, meaning that the conclusion Q is subject to doubt based on
additional information [MRL 2009]. In particular, in the above formulation, if any of R, S, or T
are true, Q is either invalid or its validity is unknown. Because R, S, and T cast doubt on the va-
lidity of conclusion Q, they are called defeaters. The “…” is significant because in principle, addi-
tional defeaters can be identified at any time. In a confidence map, inference rules exist between
claims, evidence, and defeaters.

A confidence map is developed by identifying defeaters and then arguing (via inference rules) that
the defeaters are false and that the falsity of the defeaters implies the validity of some otherwise
defeasible claim, evidence, or inference rule.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

In the defeasible reasoning literature [Pollock 2008, Prakken 2010] there are only three types of
defeaters: rebutting, undermining, and undercutting. A rebutting defeater provides a counter-ex-
ample to a conclusion. An undermining defeater raises doubts about the validity of evidence. An
undercutting defeater raises doubt about the sufficiency of an inference rule by specifying circum-
stances under which its conclusion is in doubt even when its premises are true.

Table 1: Defeater Types

De-
feater

Attacks Form Mitigation

Rebut-
ting

Claim R, so claim Q is
false

Look for counter-examples and why they can’t occur

Under-
cutting

Infer-
ence rule

U, so conclusion Q
can be true or false

Look for conditions under which the rule is insufficient and why those
conditions don’t hold or what additional information is needed to
make the rule sufficient

Under-
mining

Evidence M, so premise P is
invalid

Look for reasons the premise might be invalid and show those condi-
tions don’t hold

As a simple example, we might argue “Tweety can fly because Tweety is a bird.” A confidence
map for this argument will make explicit possible reasons for doubting that Tweety can fly (see
Figure 7). The confidence map starts by identifying the top-level claim, “Tweety can fly” and then
identifies characteristics of counter-examples to the claim, namely, “Unless Tweety is heavier
than air, not capable of producing lift, and not being propelled by an external agent.” We seek evi-
dence eliminating this doubt about the claim. The map shows that someone has examined Tweety
and determined that Tweety is a bird. The inference rule (IR3.2), “If X is a bird, X is capable of
producing lift” is used to show how the evidence eliminates the counter-example. We also look
for possible ways the evidence could be invalid (undermining defeaters). The map mentions the
possibility that the examiner is incompetent; perhaps Tweety is actually a bat, in which case, our
inference rule does not apply and we have no basis for concluding whether Tweety can fly. We
would need to eliminate this defeater to have complete confidence in the conclusion about
Tweety’s ability to fly. We also consider weaknesses in the inference rule, noting that if Tweety is
a juvenile the rule is insufficient—Tweety might be able to fly and might not. Finally, there is an
inference rule (IR2.2) that links the rebutting defeater (R2.1) to the claim that Tweety can fly.

As these defeaters are eliminated (i.e., shown to be false), our confidence in the conclusion in-
creases. When all doubts have been eliminated, we say we have total confidence in the claim.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

Figure 7: Confidence Map Example

We use a graphical notation for confidence maps. In this map, the claim “Tweety can fly” is
shown in a clear rectangular box. Claims are always stated as predicates, that is, they are either
true or false. Defeaters are shown in rectangles with chopped-off corners; the color of the rectan-
gle indicates the type of defeater. Rebutting defeaters are shown in red. Evidence that Tweety is a
bird serves to eliminate this rebutting defeater. The evidence is shown in a rounded clear rectan-
gle. An undermining defeater casting doubt on the validity of the evidence is shown in a light yel-
low. Inference rules are shown in a green rectangle. Undercutting defeaters (casting doubt on the
sufficiency of the rule) are colored yellow-orange. In general, when an inference rule is indefeasi-
ble (has no undercutting defeaters) we do not show it. IR2.2 is an example of an indefeasible rule.

The grey circle indicates there are no doubts about the element to which it is attached. For exam-
ple, the use of this element indicates we have decided that IR2.2 has no undercutting defeaters and
similarly, that UM4.1 is assumed to be false without having to present any further evidence or ar-
gument. Such decisions can, of course, be challenged by reviewers of a map.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

 Overview of the Stepper-Motor System

The subject of the case study is an engine control system (ECS) for an aircraft engine. It is a feed-
back control system that manages the thrust of an engine. One of its functions is to adjust the fuel
flow to the engine through a fuel valve. A stepper motor is used to change the position of the fuel
valve. The stepper-motor control system operates open loop (i.e., there is no direct feedback on
the successful execution of a step by the motor). The enclosing ECS feedback control loop can de-
tect a misalignment of the actual fuel-valve position with the expected position, but not at the
granularity of individual steps. Since the functionality of the stepper-motor controller has been
modeled and validated with SCADE without taking time into account, indications are that the
problem of missed step execution is due to the time-sensitive nature of processing of the control
system, specifically in the stepper-motor system (SMS), which consists of the stepper motor
(SM_Motor), the actuator (SM_ACT), and the position control system (SM_PCS).

The SMS is commanded to open the fuel valve in terms of a percentage with zero being closed
and 100 being completely open. The stepper motor takes a known number of steps to move the
fuel valve from a completely closed to a completely open position. The SMS is expected to reach
the commanded position within a bounded time that is proportional to the distance between the
current position and the desired position. At command completion the stepper motor is expected
to have reached the commanded position closest to the requested opening percentage.

The SMS may receive a new command from ECS before the previous command has been com-
pleted. SMS is expected to immediately respond to the new command (i.e., immediately moves
the fuel valve to the most recent commanded position without first continuing to the previously
commanded position).

SM_PCS operates periodically at a rate of 25ms, converts the percentage into the desired position
in terms of stepper motor steps (Steps), and commands the actuator to move the stepper motor a
specified number of steps in the open or close direction. The maximum number of steps
(MaxStepCount) to be commanded per frame is bounded to a maximum of 15 steps (i.e., the
maximum number of steps the motor is able to perform within a frame of 25ms). To move the fuel
valve as quickly as possible to the new position—that is, in a time roughly proportional4 to the
number of steps required to move from the current position to the desired position—the position-
change command sequence passed to the actuator consists of a sequence of maximum step count
commands followed by a single command with the remaining steps less or equal to the maximum
step count.

SM_PCS maintains a record of the desired position and the position to be reached through the
most recent position-change command (commanded position). On completion of the position
command, the desired position, commanded position, and actual position of the motor are ex-

4 We say “roughly proportional” because of poss ble delays in starting to move the valve and possible variations

in the time it takes to move small distances rather than large distances. “Roughly proportional” is one way of
capturing the informal specification “as quickly as possible.”

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

pected to be the same. A Homing command (to a fully closed position) is executed during initiali-
zation to synchronize the actual position with the initial desired and commanded position assumed
by the SM_PCS.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

 An AADL Model of the SMS Architecture

In this section, we present an architecture specification of the SMS in three levels of abstraction
using AADL and the Behavior Annex as modeling notation:

 SMS as the system of interest in its operational context

 the runtime architecture of the SMS as a set of interacting tasks

 the detailed functionality of each task and its interaction with the other tasks

We proceed by first presenting a model of SMS in its operational environment. This allows us to
present requirements on SMS in the context of assumptions made by the SMS about the opera-
tional environment, and to examine the impact of potential failures in the operational environment
on the SMS and vice versa. Next, we discuss the architecture model of the SMS implementation
in terms of specifications of its components and their interactions. Emphasis is placed on captur-
ing the execution and communication semantics between the components in order to address time
sensitivity issues within SMS. This is followed by a specification of SMS component states and
functional behavior. This specification provides the basis for quantifying the conditions under
which some commanded steps may be missed (see Section 5.3). Finally, we present the two pro-
posed fixes to SMS, and an alternative architecture design that greatly reduces the complexity of
the position control system without significantly increasing the logic of the actuator.

Requirements and assumptions for the SMS and its components become claims in the confidence
map or may be recorded as contextual assumptions.

4.1 The Operational Environment and Interface Specification of the SMS

The operational environment of the SMS is illustrated in Figure 8. SMS is shown to be part of a
larger engine control feedback loop consisting of an ECS, the SMS as the actuator for the fuel
valve of the engine, and the engine with a built-in thrust sensor. In addition, the operational envi-
ronment consists of the computer hardware of the Electronic Control Unit (ECU) that executes the
SMS software and a direct access memory that physically connects the ECU to the stepper motor
interface unit, which resides within the SMS. Finally, the operational environment includes a
power supply. For simplicity we use the AADL bus rather than an AADL memory component to
represent direct access memory since it acts as a data transfer mechanism. For simplicity we as-
sume a single power supply provides power to the ECU and the stepper motor inside the SMS.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

Figure 8: SMS in Its Operational Environment

The SMS and ECS are represented as AADL system components. This allows us to decompose
the SMS as necessary to elaborate its architecture. The ECU is represented as an AADL proces-
sor, and the device bus for transferring data between any sensor, the actuator, and the processor as
an AADL bus. The power supply is also modeled as an AADL bus, in this case transferring elec-
tricity. The fuel valve is represented an AADL device.

system SMS
features
 Desired_Position: in data port SM_Position.PercentOpen;
 Mechanical_Control_Position: out feature;
 DMA: requires bus access DirectAccessMemory;
 Power: requires bus access Power_Supply.Volt28;
end SMS;

Figure 9: Textual SMS Interface Specification

The interface specification of the SMS is shown textually in Figure 9. Incoming desired position
commands are represented by a data port labeled Desired_Position with the data type
SM_Position.PercentOpen. It specifies the requirement SMS-Req-1:

The desired fuel-valve opening (i.e., the position of the stepper motor commanded by the ECS)
shall be in terms of percent open with a value range of zero to MaxPercentOpen.

MaxPercentOpen is defined as a property constant with value 100 in the property set
PCSProperties.

In a contract between the SMS and the ECS, this specification represents an assumption. This as-
sumption is verified against the guarantee made by ECS (i.e., the data type specification of its out-
going port). Details of the data types used in the data model for the SMS can be found in Appen-
dix A. It uses the Data Model Annex of AADL and specifies constraints on the data values as well
as the measurement units to be used.

The mechanical interface between the stepper motor in SMS and the fuel valve is represented as
an abstract feature called Mechanical_Control_Position. Its data type represents requirement
SMS-Req2:

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

The actual position of the stepper motor driving the valve shall be expressed in units of
PercentOpen.

SMS must ensure that the actual position is consistent with the commanded position. This leads to
requirement SMS-Req-3:

At startup completion and at command completion the actual position of the stepper motor
must be the same as the position commanded by the ECS.

This is expressed more formally as an invariant on the Desired_Position and the
Mechanical_Control_Position using the Lute notation. This invariant must be verified on the
model.

SMS must complete commands in a timely fashion expressed as requirement SMS-Req-4:

A desired position command shall be completed within T = MaxPosition * max(StepDuration).

This requirement is expressed by a Latency property value associated with a flow specification
from the SMS Desired_Position input port to the Mechanical_Control_Position output feature.
The property constant MaxPosition specifies the maximum stepper motor position in units of
Steps when fully opened, with zero as fully closed. StepDuration is specified as property constant
with a time range according to a data sheet. End-to-end latency analysis will verify whether the
SMS system implementation meets this response time requirement.

SMS is expected to complete commands in proportion to the distance the stepper motor has to
move from its current position to the desired position—expressed as requirement SMS-Req-5:

The command duration shall be proportional to the distance between the current and desired
position (i.e., not exceed)
roundup (| Desired_Position – Mechanical_Control_Position | * MaxStepCount/100) * Frame-
Duration).

The Desired_Position and Mechanical_Control_Position values are in terms of PercentOpen,
thus, must be converted into number of steps. MaxStepCount has a value 15 steps per frame and
FrameDuration has a value 25ms—specified as property constants in the property set PCSProp-
erties. These two design decisions become derived requirements on the subcomponents of SMS.

SMS is expected to immediately respond to a new desired position command from ECS—
requirement SMS-Req-6:

There shall be a delay of no more than one frame before responding to the newly received com-
mand.

This specific delay bound accommodates sampling delay of command input by SMS.

SMS uses a device bus to transfer data from SM_PCS to SM_ACT, that is, it requires access to a
bus of a particular type (SMS-Req-7):

SMS shall access a bus of type DirectAccessMemory.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

The requires bus access feature called DMA specified this requirement. Type matching along the
bus access connection ensures that the correct bus type is physically connected to the SMS.

SMS also has a requirement for externally supplied power (SMS-Req-8):

SMS shall be supplied with 28-volt power.

This requirement is specified by the requires bus access feature called Power indicating that 28-
volt power needs to be supplied by identifying the bus type Power_Supply.volt28. Type matching
along the bus access connection ensures that the correct power supply is connected to the SMS.

Note that these requirements are recorded through a combination of RDAL requirement declara-
tions and specification directly in the AADL model.

4.2 The SMS Architecture

The SMS consists of three components: digital position control software for the stepper motor
SM_PCS, an actuator SM_ACT that translates commands from the position control software into
electrical signals to a stepper motor, and the stepper motor SM_Motor.

Figure 10: Details of Logical SM_PCS Architecture

Figure 10 shows the SMS architecture as a graphical view.

The position control system software SM_PCS is an AADL thread with a period of 25ms that re-
sides in an AADL process called SM_PCS_App. The figure also shows a health monitor
(SM_HM) thread with a period of 1ms in the same process that has no logical interaction with
SM_PCS. This indicates that the two threads share the same address space; thus, a coding error in
one can potentially affect the other.

A binding property in the operational environment of SMS, which contains the ECU, indicates
that SM_PCS and SM_HM execute on the ECU. A Priority property indicates that SM_HM takes
precedence over SM_PCS, thus, can affect the completion time of SM_PCS due to preemption. A
Scheduling_Protocol property on the ECU indicates that preemptive scheduling is used.

The SM_ACT and SM_Motor are modeled as AADL devices to reflect that they are separate
pieces of hardware. When developing the confidence map in Section 6, we will treat the two as a
single assembly, referred to as the fuel-valve stepper motor or as SM.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

We proceed by elaborating the AADL specification of each of the subsystems of SMS, annotating
them with properties and constraints to represent derived requirements that must be met to satisfy
SMS requirements.

4.2.1 The Position Control System Specification

We elaborate the specification of SM_PCS as shown in Figure 11.

thread SM_PCS
features
 Desired_Position: in data port SM_Position.Percentage;
 Commanded_Position: out event data port SM_Position_Change {
 Output_time => ([Time => Completion; Offset => 0 ns .. 0 ns;]);
 Output_Rate => [Value_Range => 0.40 .. 40.0; Rate_Unit => PerSecond;];
 };
flows
 flowpath: flow path Desired_Position -> Commanded_Position;
properties
 Dispatch_Protocol => Periodic;
 Period => PCSProperties::FrameDuration;
end SM_PCS;

Figure 11: Textual SM_PCS Interface Specification

SM_PCS inherits SMS-Req-1 on the incoming command from ECS on port Desired_Position
(SM_PCS-Req-1). This is specified as a decomposition relationship between the requirement dec-
larations and is recorded in the AADL model by a connection declaration from the incoming ECS
port to the appropriate incoming SM_PCS port.

The data port Desired_Position for SM_PCS specifies that desired position commands are to be
sampled with a period of 25ms (FrameDuration) (SM_PCS_Req-2). This derived requirement for
SM_PCS contributes to meeting requirement SMS-Req-5.

SM_PCS has a requirement to convert the Desired_Position, specified in PercentOpen into units
of Steps by rounding to the nearest step (SM_PCS-Req-3)

Desired_Position [Steps] = round(MaxPosition * Desired_Position [PercentOpen]/ 100).

SM_PCS has a requirement to provide actuator commands in units of Steps within the range of 0
to MaxStepCount, a direction of Open or Close, and a StepRate of 15 steps (MaxStepCount)
(SM_PCS-Req-4).

The data type SM_Position_Change on the outgoing event data port Commanded_Position speci-
fies the required data format for the position-change command (see Figure 37).

The SM_PCS has the requirement SM_PCS-Req-5 to command the actuator to the desired posi-
tion. This derived requirement supports requirement SMS-Req-2. SM_PCS-Req-5 is expressed as
the invariant that the sum of step counts in a position-change command sequence must be equal to
the difference between the desired position and the commanded position at the time SM_PCS re-
ceived the desired position command. In addition, the step direction must be consistent (i.e., it
must be Open if Desired_Position > Commanded_Position otherwise it must be Close).

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

The commanded position (Commanded_Position) is a SM_PCS internal state that represents its
understanding of the stepper-motor position and reflects the position-change commands that have
been issued (i.e., SM_PCS’ understanding of the current stepper-motor position) (see also Section
4.3.1). It needs to be initialized correctly to meet SMS-Req-3.

SM_PCS has requirement SM_PCS-Req-6 that all step counts in a position-change command se-
quence—except for the last non-zero one—must be equal to MaxStepCount. This requirement
supports SMS-Req-4.

SM_PCS has requirement SM_PCS-Req-7 that the command stream has a rate of 40 commands
per second. This is specified by the Output_Time property value of Completion_Time for the out-
going Commanded_Position port.

SM_PCS has requirement SM_PCS-Req-8 that once the desired position has been reached the po-
sition-change command will be issued with a step count of zero. This requirement is due to the
fact that SM_ACT expects a command every period. This is reflected by the lower bound of Step-
Count of zero. In addition we have a Lute theorem identified in the requirement declaration that is
used to validate this requirement on the behavior specification for SM-PCS.

4.2.2 The Actuator Specification

device SM_ACT
features
-- logical interface
 Commanded_Position: in event data port SM_Position_Change {
 Queue_Size => 0;
 Overflow_Handling_Protocol => Error;
 };
 SM_Command_Signals: feature group inverse of SM_Command_Signals;
-- physical interface
 DMA: requires bus access DirectAccessMemory;
 Power: requires bus access Power_Supply.Volt28;
flows
 flowpath : flow path Commanded_Position -> SM_Command_Signals;
properties
 Dispatch_Protocol => Aperiodic;
end SM_ACT;

Figure 12: Actuator SM_ACT Interface Specification

Figure 12 shows the interface specification for SM_ACT.

SM_ACT has requirement SM_ACT-Req-1 to process position-change commands with a speci-
fied step count, direction, and a step rate. This requirement is specified by the data type on the in-
coming Commanded_Position event data port.

SM_ACT has the requirement SM_ACT-Req-2 to immediately respond to commands from
SM_PCS. This is specified in the AADL model by a Dispatch_Protocol property with the value
Aperiodic for SM_ACT and by Commanded_Position as event data port to trigger the dispatch.
The specification SM_ACT-Req-1 affects how end-to-end latency for the flow through SMS is
calculated (SMS-Req-4).

An assumption that SM_ACT is always ready to accept position-change commands from
SM_PCS leads to requirement SM_ACT-Req-3 that Commanded_Position port does not buffer

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

incoming commands. This is specified by properties that the port has queue size of zero and an
overflow handling protocol of Error. The overflow handling protocol of Error specifies that the
previous command execution is aborted if it has not completed when the new command arrives.
This requirement specification of not queuing incoming commands potentially affects the execu-
tion of all steps (SMS-Req-2). This specification must be verified to reflect the detailed behavior
specification of SM_ACT (see Section 4.3).

SM_ACT is responsible for translating the commanded number of steps into electrical signals to
SM to perform one step at a time. The interface between the actuator and the stepper motor is
modeled by a feature group called SM_Step_Command_Signals with separate signal ports for In-
crement_Step, Decrement_Step, and Goto_Home. SM_ACT has the requirement to correctly sup-
port this interface specification (SM_ACT-Req-4).

SM_ACT has the requirement SM_ACT-Req-5 that within a frame the number of Increment_Step
or Decrement_Step command signals must be equal to the commanded step count and must be
consistent with the commanded direction. This requirement is expressed as a Lute theorem and
contributes to the satisfaction of SMS-Req-2.

SM_ACT includes a requirement that the commanded number of steps can be completed within
one frame, that is, MaxStepCount * max(StepDuration) <= FrameDuration (SM_ACT-Req-6).
This value is specified as Latency value on the flow specification and will be used to calculate
end-to-end latency for commands through SMS (i.e., to determine whether SMS-Req-4 and SMS-
Req-5 are met).

The SM_ACT interface specification also includes required bus access declarations for the direct
access memory of a specific bus type (SM_ACT-Req-7) and the power supply with a specific
voltage (SM_ACT-Req-8). AADL model type checking ensures use of the correct bus and power
supply.

4.2.3 The Stepper-Motor Specification

The stepper motor SM_Motor is specified as a device with dispatch protocol of Aperiodic indicat-
ing that it reacts to commanding signals from the actuator.

The interface with the actuator includes a signal from the stepper motor to indicate the completion
of a step execution (Step_Completion event port in the feature group SM_Command_Signals).
The detailed specification of the interface can be found in Figure 37 and is expected to be sup-
ported by SM_Motor (SM_Motor_Req-1). These command and response signals must match
those of the outgoing feature group of SM_ACT. Type checking ensures matching assumption
and guarantee.

SM_Motor also includes the specification of the external interface to the fuel value (SM_Motor-
Req-2), which is inherited from SMS-Req-2.

The execution time of the stepper motor is specified to be the time range StepDuration, that is, the
length of time it takes for the motor to move one step at the specified rate of 15 steps per frame
(SM_Motor-Req-3). This time range corresponds to the range of steps per second documented in
the stepper-motor specification sheet. This requirement assumes that the actuator has been in-
structed to operate at the MaxStep step rate.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

4.3 SMS Functional Design as State and Behavior

In this section we elaborate the three components of SMS with a detailed functional design speci-
fication. Our focus is on state-based behavior and maintenance of state of the stepper motor by the
control system (the combination of the position control system and the actuator).

Within SMS we deal with three states:

 the desired position of the stepper motor (i.e., the position requested by the ECS)

 the commanded position (i.e., the position that the position control system and actuator have
asked the stepper motor to be at)

 the actual position of the stepper motor

As we will show, the interaction timing between the position control system and the actuator can
lead to a discrepancy in the desired position and the commanded position when execution of the
desired position command has completed. We do this by identifying the assumption in the actua-
tor logic that all step commands have been issued to the stepper motor before the next command
arrives. We are led to this potential issue by considering early command arrival as a potential haz-
ard contributor.

4.3.1 The Position Control System State and Behavior

The position controller SM_PCS maintains two persistent state variables: the
DesiredPositionState holding the most recently received DesiredPosition to be reached and the
CommandedPositionState representing the position it has commanded the actuator to reach (i.e.,
the understanding by SM_PCS of the current stepper motor position). They are represented in the
AADL model as persistent data subcomponents of the SM_PCS.impl thread implementation, as
shown in Figure 13. We have the requirement that when the position-change command sequence
has been completed the desired position and commanded position must be the same (SM_PCS-
Req-5). SM_PCS must correctly translate the desired position command into the position-change
command sequence (i.e., meet SM_ACT-Req-4, SM_ACT-Req-5, and SM_ACT-Req-6).

We use the Behavior Annex of AADL [SAE 2011] to specify the details of the functional behav-
ior of the Position_Controller (see Figure 13). This specification has a single state that triggers a
transition to itself on every dispatch. The transition action indicates that at every dispatch, if a
new Desired_Position (command) value has been received, its range is checked. If the value is
within range, it is converted to units of steps and recorded as DesiredPositionState. If it is not
within range, the command is ignored. This provides runtime assurance that the desired position is
in range (inherited requirement SMS-Req-1) (i.e., resilience to out-of-range values from the
sender or any value corruption during transfer).

The stepper motor can execute steps at a specified rate with a maximum rate determined by the
physical characteristics of the stepper motor. A fixed rate of 15 steps per frame (SPF) was chosen
in the baseline design to minimize functional complexity and mechanical acceleration lag. Since
the interface between SM_PCS and SM_ACT includes step rate as a parameter (see data type
SM_Position_Change), SM_PCS is expected to set the step rate to 15 SPF—reflected in the prop-
erty constant MaxStepCount. This design decision is specified by limiting the step rate field val-
ues in SM_Position_Change to MaxStepCount. Hence, when the motor is requested to move

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

fewer than MaxStepCount steps (e.g., four steps), it executes the steps at the 15 SPF rate and then
is idle until the end of the frame.

SM_PCS compares the desired position and commanded position states to determine whether the
stepper motor needs to Open or Close, and how many steps must be performed. The Com-
mandedPositionState is then updated to reflect the commanded change in position toward the de-
sired position. By doing so, SM_PCS assumes that the commanded number of steps will actually
be executed by the stepper motor (i.e., it relies on SM_ACT and SM_Motor to not introduce a
missed step).

The behavior specification indicates that the maximum step count is used to reach the desired po-
sition until the position difference is fewer than 15 steps. At that point the actual difference value
is used as the step count (necessary to meet SM_PCS-Req-6).

The SM_PCS responds immediately to a new desired target position by updating the
DesiredPositionState with any new incoming Desired_Position value every 25ms (necessary to
meet SM_PCS-Req-2 contributing to SMS-Req-5).

thread implementation SM_PCS.impl
subcomponents
 DesiredPositionState: data SM_Position.Steps;
 CommandedPositionState: data SM_Position.Steps;
annex Behavior_Specification {**
 variables
 distance: Base_Types::Integer;
 stepcount: Base_Types::Integer;
 states
 Ready: initial complete state;
 transitions
 Ready -[on dispatch]-> Ready { -- on every 25ms dispatch begin action
 -- check for out of range if a new command has been received
 if ((Desired_Position'fresh = true) and (Desired_Position >= 0)
 and (Desired_Position <= PCSProperties::MaxPercent)){
 -- convert from PercentOpen to Steps
 DesirePositionState := PCSProperties::MaxPosition*Desired_Position/100
 } end if;
 distance := DesiredPositionState - CommandedPositionState ;
 if (abs(distance)> PCSProperties::MaxStepCount)
 stepcount := PCSProperties::MaxStepCount
 else
 stepcount := abs(distance)
 end if;
 Commanded_Position.Step_Rate := PCSProperties::MaxStepCount;
 if (distance>0){
 Commanded_Position.Step_Direction := Open;
 Commanded_Position.Step_Count := stepcount;
 CommandedPositionState := CommandedPositionState + stepcount
 } else {
 -- this case handles steps in the close direction as well as zero steps
 -- note that zero step commands are expected to be issued
 Commanded_Position.Step_Direction = Close;
 Commanded_Position.Step_Count = stepcount;
 CommandedPositionState = CommandedPositionState - stepcount
 } end if;
 Commanded_Position!;
 }; -- end action
**};

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

end SM_PCS.impl;

Figure 13: Position Control System Behavior Specification

4.3.2 The Actuator State and Behavior

The stepper motor actuator also maintains system state in the form of a persistent StepsToDo state
represented by a persistent data subcomponent of type SM_Position_Change.

Figure 14 shows the behavior specification for SM_ACT. The behavior is characterized by three
states:

 Ready, indicating that it is waiting for a command from SM_PCS

 WaitOnStep to indicate that the execution of a step by SM is in progress

 Decide as an intermediate state dealing with the decision of whether there are steps left to be
executed by SM.

Arrival of a Commanded_Position is handled by the Ready state and the WaitOnStep state (first
two transitions in Figure 14). StepsToDo is set to the newly arrived value. An assumption is made
that the count value at that time is zero, that is, all steps from the previous command have been
issued (SM_ACT-Req-6). It is a necessary condition for SM_ACT-Req-2 and SM_ACT-Req- 4.

The first transition out of the Decide state determines that no step has to be taken. The other tran-
sition out of the Decide state specifies whether an Increment_Step or Decrement_Step signal is to
be issued according to the specified Direction and updates the step count.

The transition out of the WaitOnStep state triggered by the arrival of the step completion signal
leads to the Decide state, which determines whether additional steps are to be performed. A
timeout may compensate for a missing completion signal from the motor.

device implementation SM_Act.impl
subcomponents
 StepsToDo: data SM_Position_Change.DataRecord;
annex Behavior_Specification {**
 states
 Ready: initial state;
 WaitOnStep: complete state;
 Decide: state;
 transitions
 Ready -[on dispatch Commanded_Position]-> Decide {
 StepsToDo := Commanded_Position
 };
 WaitOnStep -[on dispatch Commanded_Position]-> WaitOnStep {
 StepsToDo := Commanded_Position
 };
 WaitOnStep -[on dispatch DoStempCmd.StepDone]-> Decide ;
 Decide -[StepsToDo.Step_Count = 0]-> Ready ;
 Decide -[StepsToDo.Step_Count > 0]-> WaitOnStep {
 StepsToDo.Step_Count := StepsToDo.Step_Count - 1;
 if (StepsToDo.Step_Direction = Open)
 SM_Command_Signals.SM_Cmd.DoIncrement!(StepsToDo.Step_Rate);
 else
 SM_Command_Signals.SM_Cmd.DoDecrement!(StepsToDo.Step_Rate);
 end if
 };
**};

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

end SM_Act.impl;

Figure 14: Stepper-Motor Actuator Behavior Specification

4.3.3 The Stepper-Motor State and Behavior

The stepper motor SM has a persistent state as well, represented by the data subcomponent
ActualPositionState in the SM device implementation. It represents the mechanical position of the
stepper motor. The state is incremented or decremented according to the arriving command signal
and the mechanical execution of the motor step.

4.3.4 SMS Design Constraints

In order for the SMS to operate correctly, the DesiredPositionState of SM_PCS,
CommandedPositionState of SM_PCS, and ActualPositionState of SM must be the same when the
SMS is not actively executing steps. This design constraint is declared as part of an RDAL
requirement declaration, and supports the requirement SMS-Req-3 using SM_PCS-Req-5 and
SM_ACT-Req-4.

During initialization of the SMS, the Homing command brings the actual state of the stepper mo-
tor to a known state, namely the zero position.

4.4 Three Proposed Corrections

In order to correct the missed step problem in the stepper motor control system, two corrections
have been proposed by the developers. The first correction proposes to minimize variation in the
time SM_PCS send the position-change command to SM_ACT. The second correction proposes
to introduce buffering of position-change commands as they arrive at SM_ACT. In this section we
describe the changes to the AADL model to reflect each of these corrections. We will also exam-
ine a third correction in the form of an architecture design change, in which SM_PCS does not is-
sue position-change commands to the actuator, but passes on the desired position instead after val-
idating that the command received from ECS is acceptable. We will show that this design
alternative eliminates several design hazards and results in a more robust design without signifi-
cantly increasing the functionality of the actuator.

4.4.1 The Fixed Command Send Time Solution

In this proposal SM_PCS sends the sequence of position-change commands at a fixed offset of
13ms from the beginning of a 25ms time frame—a new requirement on SM_PCS (SM_PCS-Req-
9). The rationale is that this will minimize variation in inter-arrival time of the commands at the
actuator.

We document this change in the SMS architecture model by changing the Output_Time property
on the Commanded_Position port of SM_PCS to be the deadline of SM_PCS. Furthermore, we
set the deadline for SM_PCS to 13ms, since a delay until the end of the frame was considered to
be too long.

This specified communication time behavior can be implemented in two ways:

 by the runtime system—In addition to dispatching tasks at specified times the runtime sys-
tem can initiate communication based on the specification in the AADL model. This solution

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

avoids context switching overhead and results in negligible variation in send time. No further
changes to the model are necessary.

 by an application I/O thread—The application thread is scheduled at the same 25ms period
as SM_PCS, but with an offset dispatch time of 13ms. Note that in this case we have context
switching overhead, and this thread is immediately preempted by the SM_HM thread run-
ning at a period of 1ms.

4.4.2 The Buffered Position-Change Command Solution

In this proposal the actuator will buffer incoming position-change commands until it has com-
pleted the execution of the previous command—a revision to requirement (SM_ACT-Req-2-rev).
A buffer size of one was deemed sufficient since SM_PCS only sends one command per 25ms
frame—an assumption that must be verified.

We document this change in the SMS architecture model by changing the queue size of the
Commanded_Position port for SM_ACT to be of size 1.

The implementation specification of SM_ACT changes as follows. SM_ACT does not respond to
the arrival of a command until it has reached the Ready state (i.e., we remove the transition out of
WaitOnStep triggered by the port Commanded_Position).

4.4.3 The Desired Position Actuator Commanding Solution

In this solution the desired position is immediately passed on to the actuator after it has been con-
verted from PrecentOpen units to Steps units and validated as an acceptable position to be com-
manded.

This requires a change in the interface specification of SM_PCS Commanded_Position and
SM_ACT Commanded_Position to the data type SM_Position.

The behavior specification of SM_PCS is simplified to perform range checking of the incoming
desired position value and conversion to Steps.

The complexity of the actuator functional behavior does not increase significantly compared to
the original behavior logic (see Figure 14) and is shown in Figure 15.

The StepsToDo state variable is replaced by the DesiredPositionState and the
CommandedPositionState variables. Instead of comparing the step count against zero and then
issuing an increment or decrement command signal to the motor depending on the direction flag,
SM_ACT now compares the most recently received desired position against the last commanded
position and issues an increment or decrement command depending on whether the desired
position is greater or less than the commanded position.

As we will see in the architecture fault analysis, this design is able to tolerate transient message
corruption or loss by the direct access memory. The original design was sensitive to message cor-
ruption or loss.

device implementation SM_Act_SMPos.impl
subcomponents
 DesiredPositionState: data SM_Position.Steps;
 CommandedPositionState: data SM_Position.Steps;

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

annex Behavior_Specification {**
states
 Ready: initial complete state;
 WaitOnStep: complete state;
 Decide: state;
transitions
 Ready -[on dispatch Commanded_Position]-> Decide {
 DesiredPositionState := Commanded_Position
 };
 WaitOnStep -[on dispatch Commanded_Position]-> WaitOnStep {
 DesiredPositionState := Commanded_Position
 };
 WaitOnStep -[on dispatch DoStempCmd.StepDone]-> Decide ;
 Decide -[DesiredPositionState = CommandedPositionState]-> Ready ;
 Decide -[DesiredPositionState != CommandedPositionState]-> WaitOnStep {
 if (CommandedPositionState > DesiredPositionState) {
 CommandedPositionState := CommandedPositionState - 1;
 SM_Command_Signals.SM_Cmd.Decrement_Step!(PCSProperties::MaxStepCount)
 } elsif (CommandedPositionState < DesiredPositionState) {
 CommandedPositionState := CommandedPositionState + 1;
 SM_Command_Signals.SM_Cmd.Increment_Step!(PCSProperties::MaxStepCount)
 } end if
 };
**};
end SM_Act_SMPos.impl;

Figure 15: Position-Commanded Actuator Behavior

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

 Fault Analysis of the SMS Architecture

In this section we use architecture fault modeling to analyze the SMS architecture for software-
induced hazards. In particular, we use fault impact analysis to identify all possible error sources in
the original SMS design that can result in a missed step—a violation of SMS-Req-3. Using the
fault propagation ontology of EMV2 we systematically identify potential sources of hazards and
determine whether they can be assumed to be eliminated (e.g., satisfaction of SMS-Req-6) or
whether they lead to additional (safety) requirements with respect to timing.

We annotate the SMS components and the components of the operational environment with error
source and propagation information. We annotate the original design, the two proposed correc-
tions, and the design alternative. We then analyze the resulting architecture fault models for fault
impact and unhandled faults. The analysis will determine contributors to missed steps in the SMS
and identify those that are avoidable in the design of the SMS. The analysis also gives us insight
into the resilience of the SMS design to propagations from the operational environment. Finally,
we quantify the failure conditions that can result in the missed step or delayed response to new
commands, and derive safety requirements that must be met in order for the failure condition not
to occur.

5.1 Hazards and Their Impact on the SMS Architecture

We annotate the AADL architecture with potential error sources and error propagations for each
of the SMS components and components in the operational environment. We utilize the fault
propagation ontology of EMV2, a library of pre-declared error propagation types, as a checklist to
ensure we have considered all possible effects of failure conditions on other components.

In a first step, we focus on malfunctions of each component due to a defect in the component. The
malfunction can lead to a violation of a requirement or a non-functional component. The effects
of such a malfunction are observable as error propagations. These become possible defeaters in
the confidence map.

We examine each of the outgoing ports and determine whether the component is the source of an
error propagation of the error type’s timing, rate, value, and omission. We use error type aliases
for the error types to provide more meaningful names in the context of the component for which
error sources and propagations are specified. For example, MissingCommand is used as an alias
for ItemOmission.

We specify potential error sources and assumptions about their absence in SMS, its components,
and the elements of the operational environment. We record error sources for each component
within SMS by declaring out propagations for specific error types, and by identifying them as er-
ror sources via error source declarations.

In a second step, we specify how each system component deals with incoming error propaga-
tions—that is, whether a particular type of incoming error propagation is passed on as propagation
of the same type, as propagation of a different type, and whether the component becomes a sink
for the propagated error type. In this case study we infer these error flow specifications from the

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

detailed design. In a new development these error flow specifications would become additional
requirements on the system design.

Since the design of the SMS components has been specified and verified in SCADE, we assume
that the functionality is correctly implemented (i.e., that value errors will not occur). We docu-
ment this by an appropriate error containment declaration using the not out propagation construct
of EMV2.

We also specify the fault model for SMS as a whole. This specification represents an abstraction
of the error propagation behavior of the SMS implementation in terms of SM_PCS, SM_ACT,
and SM_Motor. Such an abstracted fault model specification has several benefits. It allows vari-
ous forms of safety analysis to be performed compositionally one layer at a time. For example, the
error propagation guarantees and assumptions of SMS as a whole can be checked against those of
the components in the operational environment separately from checking that the SMS implemen-
tation is consistent with the abstracted fault model of SMS. It also reflects a fault management
strategy of a system (e.g., fail silent/fail stop) and a consistency check between the abstraction and
the implementation ensures that the strategy is realized correctly.

5.1.1 The Position Control System SM_PCS Architecture Fault Model

SM_PCS is a potential source of timing and rate errors. Since SM_PCS sends the position-change
command at completion time and completion time is variable, it can be a source of timing errors
(i.e., early and late delivery). This is documented in the AADL model by declaring an outgoing
error propagation of type TimingError, whose subtypes are EarlyDelivery and LateDelivery on
the Commanded_Position port, and by identifying it as an error source (see the timingsrc error
source declaration in Figure 16).

We also consider SM_PCS to be a source of RateError. First, the SM_PCS thread may get dis-
patched at a rate slower than the specified periodic rate, for example, due to a slow-running clock
in the processor. Second, the receiving task (SM_ACT) operates asynchronously from the sender
thread (SM_PCS) and is driven by the arrival of commands. Its maximum command execution
rate is determined by the time it takes to execute the commanded steps by the stepper motor. This
rate can potentially be lower than the rate of SM_PCS.

To address requirement SMS-Req-6 to immediately respond to a new command we use the error
type DelayedService with the alias DelayedResponse. We specify that we do not expect SMS and
any of its components to delay execution of a new command by declaring that SM_PCS will not
be propagating this error type.

We assume that SM_PCS is not a source of value errors. In particular we assume that the step
count value for the commanded position change is not out of range (expressed by the alias
StepCountOutOfRange for the error type OutOfRange) and the resulting commanded position is
not out of bounds (expressed by the alias ResultingPositionOutOfRange for the error type
OutOfBounds). This is expressed by the not out propagation declaration on
Commanded_Position.

thread SM_PCS
features
 Desired_Position: in data port SM_Position.PercentOpen;
 Commanded_Position: out event data port SM_Position_Change;

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

annex EMV2 {**
use types SMErrorTypes;
error propagations
-- outgoing errors
 Commanded_Position : out propagation {TimingError, RateError,
 MissingCommand, NoCommandSequence};
-- errors not propagated
 Commanded_Position: not out propagation {StepCountOutOfRange,
 ResultingPositionOutOfRange, DelayedReponse};
-- incoming errors
 Desired_Position : in propagation {MissingCommand, NoCommandSequence,
 OutOfRange};
-- errors not propagated in
 Desired_Position : not in propagation {DelayedReponse};
-- impact of processor
 Processor: in propagation {NoService, CompletionTiming};
flows
-- error sources
 timingsrc: error source Commanded_Position {TimingError};
 ratesrc: error source Commanded_Position {RateError};
-- error pass through
 omissionpPassthrough: error path Desired_Position{MissingCommand,
 NoCommandSequence} -> Commanded_Position;
-- map out of range into a missing command
 outOfRangeHandling: error path Desired_Position{OutOfRange} ->
 Commanded_Position {MissingCommand};
-- map ECU error propagation into no commands
 resourceserviceimpact: error path processor{NoService} ->
 Commanded_Position{NoCommandSequence};
end propagations;
**};
end SM_PCS;

Figure 16: Fault Model Specification of the Position Control System SM_PCS

We specify the following SM_PCS fault model behavior for dealing with incoming error propaga-
tions:

 SM_PCS does not assume incoming desired position commands are always within range.
The incoming error propagation of type OutOfRange is mapped into an outgoing
MissingCommand (alias for ItemOmission) by the error path declaration
outOfRangeHandling. This specification results in a requirement that SM_PCS checks the
range of the incoming desired position and ignores the command if out of range. This makes
SM_PCS robust to out-of-range errors even though ECS not expected to intentionally
propagate such errors.

 Any incoming MissingCommand or NoCommandSequence (alias for ServiceOmission) from
the ECS is passed through as outgoing propagations of the same type (see error path
omissionPassthrough).

 Incoming NoService error propagations from the processor SM_PCS is bound to are mapped
into NoCommandSequence by the error path resourceserviceimpact

5.1.2 The Actuator SM_ACT Architecture Fault Model

The actuator SM_ACT fault model specifies the following fault behavior (Figure 17):

 SM_ACT assumes StepCountOutOfRange and ResultingPositionOutOfRange errors will not
occur as incoming propagation on the CommandedPosition port.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

 The functional logic of SM_ACT is assumed to be current under nominal conditions (i.e.,
has been verified by SCADE). In other words, SM_ACT is an error source declaration for
the MissingStepCommand out propagations.

 SM_ACT can have a mechanical failure—it can be the source of a NoCommandSequence
out propagation (alias for ServiceOmission)—expressed by the error source declaration
mechanicalFailure.

 EarlyDelivery beyond a certain time limit will result in SM_ACT aborting the previous posi-
tion-change command by overriding a non-zero step count. This is expressed by the error
path declaration EarlyDeliveryImpact mapping EarlyDelivery into MissingStepCommand.
As we will see from the analysis, this is the case if the new command arrives before the last
step command has been issued by the actuator.

 Incoming LateDelivery results in a minor delay in stepper-motor response, indicated by the
error path LateDeliveryImpact to outgoing error propagation SlowResponse (alias for
LateDelivery).

 SM_ACT will immediately respond to a new command (i.e., we assume there is no
DelayedResponse error source and there is no incoming DelayedResponse propagation).

 An incoming HighRate error results in an outgoing MissingStepCommand error propagation
—expressed by the error path Rateimpacthi. This can occur when commands arrive faster
than SM_ACT can process them, which has the same effect as early delivery.

 An incoming LowRate error results in a minor delay in stepper-motor response, indicated by
the outgoing error propagation SlowResponse—expressed by the error path Rateimpactlo.

 SM_ACT can fail to provide a command sequence to the stepper motor when power fails to
be supplied. This is expressed by the error path declaration nopowerflow from the incoming
error propagation Power.

device SM_Actuator
features
features
-- logical interface
 CommandedPosition: in event data port SM_Position_Change {
 Queue_Size => 0;
 Overflow_Handling_Protocol => Error;
 };
 SM_Command_Signals: feature group inverse of SM_Command_Signals;
-- physical interface
 DMA: requires bus access DirectAccessMemory;
 Power: requires bus access Power_Supply.Volt28;
flows
 flowpath : flow path CommandedPosition -> SM_Command_Signals;
properties
 Dispatch_Protocol => Aperiodic;
annex EMV2 {**
use types SMErrorTypes;
error propagations
 Commanded_Position : in propagation { MissingCommand, NoCommandSequence,
 TimingError, RateError};
 Commanded_Position : not in propagation { StepCountOutOfRange,
 ResultingPositionOutOfRange, DelayedResponse};

 SM_Command_Signals.SM_Cmd : out propagation { MissingStepCommand,
 NoCommandSequence, SlowResponse};

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

 SM_Command_Signals.SM_Cmd : not out propagation {DelayedResponse};
 SM_Command_Signals.Step_Completion: not in propagation {CompletionOmission};
 Power : in propagation {NoService};
flows
 omissionPath1: error path CommandedPosition{ MissingCommand, NoCommandSequence} -
> SM_Command_Signals.SM_Cmd(MissedStep);

 LateDeliveryImpact: error path CommandedPosition{ LateDelivery} ->
SM_Command_Signals.SM_Cmd(SlowResponse);

 EarlyDeliveryImpact: error path CommandedPosition{ EarlyDelivery} ->
SM_Command_Signals.SM_Cmd(MissingStepCommand);

 Rateimpacthi: error path CommandedPosition{ HighRate} ->
SM_Command_Signals.SM_Cmd(MissingStepCommand);

 Rateimpactlo: error path CommandedPosition{ LowRate} ->
SM_Command_Signals.SM_Cmd(SlowResponse);

 MechanicalFailure: error source
 SM_Command_Signals.SM_Cmd {NoCommandSequence} when {ActuatorFailure};
 nopowerflow: error path Power ->
 SM_Command_Signals.SM_Cmd {NoCommandSequence};
end propagations;
**};
end SM_Actuator;

Figure 17: Fault Model Specification of the Actuator SM_ACT

5.1.3 The Stepper-Motor SM_Motor Architecture Fault Model

The actuator SM_Motor fault model specifies its fault behavior as shown in Figure 18:

 SM_Motor can be the source of a mechanical stepper-motor failure—expressed by the error
source declaration SMFailure. This failure becomes visible as NoSteps through the
Mechanical_Control_Position feature.

 SM_Motor passes on an incoming MissingStepCommand as MissedStep (both aliases for
ItemOmission).

 SM_Motor passes on NoCommandSequence as NoSteps (both aliases for ServiceOmission).

 SM_Motor passes on SlowResponse as SlowResponse and assumes DelayedResponse to a
new command will not occur.

 Loss of power to SM_Motor turns into NoSteps.
device Stepper_Motor
features
 SM_Command_Signals: feature group SM_Command_Signals;
 Mechanical_Control_Position: out feature ;
 Power: requires bus access Power_Supply.Volt28;
flows
 flowsink: flow sink SM_Command_Signals{Latency => 1 ms .. 1 ms;};
properties
 Dispatch_Protocol => Aperiodic;
 Compute_Execution_Time => PCSProperties::StepDuration;
annex EMV2 {**
use types SMErrorTypes;
error propagations
 SM_Command_Signals.SM_Cmd : in propagation {MissingStepCommand,
 NoCommandSequence, SlowResponse};
 SM_Command_Signals.SM_Cmd : not in propagation {DelayedResponse};

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

 SM_Command_Signals.Step_Completion: not out propagation {CompletionOmission};
 Power: in propagation{NoService};
 Mechanical_Control_Position: out propagation
 {MissedStep, NoSteps, SlowResponse};
 Mechanical_Control_Position: not out propagation {DelayedResponse};
flows
 SMfailure: error source Mechanical_Control_Position{NoSteps}
 when {StepperMotorFailure};
 cmdimpact1: error path SM_Command_Signals.SM_Cmd{MissingStepCommand}
 -> Mechanical_Control_Position{MissedStep};
 cmdimpact2: error path SM_Command_Signals.SM_Cmd{NoCommandSequence}
 -> Mechanical_Control_Position{NoSteps};
 cmdlate1: error path SM_Command_Signals.SM_Cmd{SlowResponse}
 -> Mechanical_Control_Position{SlowResponse};
 nopower: error path Power{NoService} -> Mechanical_Control_Position{NoSteps};
end propagations;
**};
end Stepper_Motor;

Figure 18: Fault Model Specification of the Stepper Motor SM_Motor

5.1.4 The Engine Control System ECS Architecture Fault Model

The engine control system ECS fault model specifies the following fault behavior (Figure 19):

 ECS can be the source of NoCommandSequence and MissingCommand propagations due to
ECS failure.

 ECS is expected to provide desired position commands within range position values (i.e.,
does not propagate OutOfRange position values).

The ECS determines the desired percentage of fuel-valve opening to achieve desired fuel flow and
thrust of an engine. We specify that the desired position will be in range, and that an ECS failure
will result in lack of desired position commands (MissingCommand and NoCommandSequence).

system EngineControlSystem
features
 desiredThrust: in data port ;
 thrustReading: in data port ;
 valvePosition: out data port SM_Position;
flows
 flowsource : flow source valvePosition{Latency => 1 ms .. 1 ms;};
annex EMV2{**
use types SMErrorTypes;
error propagations
 valvePosition: out propagation {NoCommandSequence, MissingCommand};
 valvePosition: not out propagation {OutOfRange};
flows
 ecsfailure: error source valvePosition{NoCommandSequence, MissingCommand}
 when {ECSFailure};
end propagations;
**};
end EngineControlSystem;

Figure 19: Fault Model Specification of ECS

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

5.1.5 The ECU Architecture Fault Model

The ECU can fail, that is, it is an error source of type NoService (alias for ServiceOmission). The
ECU can propagate errors to any software component bound to it, specified by an outgoing propa-
gation declaration for bindings. NoService is also propagated to the direct access memory con-
nected to the ECU. The ECU is affected by PowerLoss from the power supply, which is passed on
as a NoService error propagation to the software units bound to the ECU.

5.1.6 The Direct Access Memory Architecture Fault Model

The architecture fault model of the device bus is shown in Figure 20. The direct access memory
can be the source of MessageLoss (alias of ItemOmission) and MessageCorruption (alias for
ValueError) to any connection bound to the bus. This is declared by the error source declaration
Commerror for the bindings propagation point.

In addition, the device bus passes on incoming NoService propagations from the ECU—expressed
by the error path declaration NoECUService.

bus DirectAccessMemory
annex EMV2 {**
use types SMErrorTypes;
error propagations
 bindings: out propagation {NoService, MessageLoss, MessageCorruption};
 access: in propagation {NoService};
flows
 NoECUService: error path access {NoService} -> Bindings(NoService);
 Commerror: error source bindings{MessageLoss, MessageCorruption}
 when {DeviceBusFailure};
end propagations;
**};
end DirectAccessMemory;

Figure 20: Fault Model Specification of the Direct Access Memory

Propagations from the direct access memory affect the connection between SM_PCS and
SM_ACT. Type transformation rules associated with the connection specify that NoService and
MessageLoss from the bus result in NoCommandSequence and MissingStepCommand.
MessageCorruption results in a ValueError for the commanded position arriving at SM_ACT.
Note that a value error can be subtle or detectable out-of-range value.

5.1.7 The Power Supply Architecture Fault Model

The power supply is the error source for PowerLoss, which is propagated to all components con-
nected to this power source—in our example, to the ECU, actuator, and stepper motor.

5.1.8 The Fuel-Valve Architecture Fault Model

The fuel valve can fail (ValveFailure). In addition, incoming MissedStep errors are mapped to
valve errors in the form of IncorrectFlow. Similarly, an incoming NoSteps error has the effect of a
StuckValve. A slow response by the stepper motor propagates as SlowResponse. We assume that
delayed response to a new command will not occur—expressed by not in/out propagation for
DelayedResponse.

device Valve

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

features
 MechanicalValveControl: in feature;
 FuelFlow: out feature;
annex EMV2 {**
use types SMErrorTypes;
error propagations
 MechanicalValveControl: in propagation { NoSteps, MissedStep,
 SlowResponse};
 MechanicalValveControl: not in propagation {DelayedResponse};
 FuelFlow: out propagation {StuckValve, IncorrectFlow, SlowResponse};
 FuelFlow: not out propagation {DelayedResponse};
flows
 FailedValve: error source FuelFlow{StuckValve} when {ValveFailure};
 MapToStuckValve: error path MechanicalValveControl{NoSteps}
 -> FuelFlow{StuckValve};
 MapToIncorrectFlow: error path MechanicalValveControl{MissedStep}
 -> FuelFlow{IncorrectFlow};
 MapToSluggishResponse: error path MechanicalValveControl{SlowResponse}
 -> FuelFlow{SlowResponse};
end propagations;
**};
end Valve;

Figure 21: Fault Model Specification of Fuel Valve

5.1.9 The SMS Architecture Fault Model

For the SMS we specify fault model information for the SMS implementation and an abstracted
fault model for the SMS. The fault information for the SMS implementation relates to the interac-
tion between the SMS components (i.e., error behavior associated with connections). The ab-
stracted fault model for SMS allows us to understand the fault behavior of the SMS in the context
of its operational environment without requiring access to the SMS implementation—it facilitates
compositional fault model analysis.

The abstracted fault model will be checked for consistency with the fault models of the system
implementation components. The incoming and outgoing error propagation declarations must be
consistent with those in the SMS implementation subcomponents that are connected to each of
these interaction points (port, bus access, and feature). Similarly, error source, error path, and er-
ror sink declarations must be consistent with the fault behavior of the SMS subcomponent error
models.

A set of type transformation rules specifies how the error propagations from the direct access
memory affect the commanded position command being transmitted between SM_PCS and
SM_ACT. NoService and MessageLoss from the bus result in NoCommandSequence and
MissingStepCommand. MessageCorruption results in a ValueError for the commanded position
arriving at SM_ACT. This type transformation set is associated with the
SendPositionChangeCommand connection in the connection error section of the EMV2 subclause
in the SMS.Original system implementation.

The abstracted fault model for the SMS is specified in the system type (shown in Figure 22). It
documents assumptions made about incoming propagations to SMS and how SMS handles them,
about outgoing propagations from SMS, and whether SMS is the source. This specification is
common to all implementations of SMS.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

For the SMS variant, we document that it is the error source for MissedStep in the system imple-
mentation declaration SMS.Original as shown in Figure 23. This specification inherits the EMV2
declarations from the system type SMS.
System SMS
features
 Desired_Position: in data port SM_Position;
 Mechanical_Control_Position: out feature;
 DMA: requires bus access DirectAccessMemory;
 Power: requires bus access Power_Supply.Volt28;
annex EMV2 {**
use types SMErrorTypes;
error propagations
 DesiredPosition: in propagation {NoCommandSequence, MissingCommand,
 OutOfRange};
 Mechanical_Control_Position: out propagation {MissedStep, NoSteps,
 SlowResponse};
 Mechanical_Control_Position: not out propagation {DelayedResponse};
 Power: in propagation {PowerLoss};
 Processor: in propagation {NoService, CompletionTiming};
 Connection: in propagation {NoService, MessageLoss, MessageCorruption};
flows
 DPpath1: error path DesiredPosition{NoCommandSequence}
 -> Mechanical_Control_Position{NoService};
 DPpath2: error path DesiredPosition{MissingCommand}
 -> Mechanical_Control_Position {MissedStep};
 DPpath3: error path DesiredPosition{NoCommandSequence}
 -> Mechanical_Control_Position {NoService};
 -- mapping of power errors
 powerpath: error path Power{PowerLoss}
 -> Mechanical_Control_Position (NoService);
 ECUpath: error path Processor{NoService}
 -> Mechanical_Control_Position {NoService};
 Connectionpath: error path Connection {MessageCorruption}
 -> Mechanical_Control_Position {MissedStep};
end propagations;
**};
end SMS;

Figure 22: Abstracted Fault Model Specification for SMS

System implementation SMS.Original
-- subcomponents and connections
annex EMV2 {**
use types SMErrorTypes;
error propagations
flows
 MissedStepSource: error source Mechanical_Control_Position{MissedStep};
end propagations;
**};
end SMS.Original;

Figure 23: SMS Variant Specific Fault Information

5.2 Fault Impact Analysis of the Original SMS Architecture

In this section we use fault impact analysis on the architecture fault model to determine potential
contributors to the missed step problem, to identify potentially unhandled faults, and to assess the
resilience of SMS to fault propagations from the operational environment. In the next section we
will quantify timing-related error propagation types as timing conditions that must be satisfied for

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

the error propagation not to occur. These conditions become derived safety requirements on the
SMS components.

We create an instance model of the system implementation SMS.Original in its operational envi-
ronment and perform fault impact analysis on it. In the process the EMV2 consistency checker
will ensure that all incoming error propagation assumptions are met by outgoing propagation
guarantees and that the propagation specifications in the abstracted SMS fault model are con-
sistent with those of the SMS components. For example, the consistency checker would give a
warning if we had forgotten to specify that SM_PCS will not propagate OutOfRange errors, an
assumption made by SM_ACT (shown in Figure 24).

Figure 24: Missing Error Containment Guarantee Specification

Fault impact analysis traces propagation of every error source, representing a failure mode, to
components impacted by the effect of the propagation, and does so multiple levels deep. A sample
of the resulting report is shown in Figure 25.

From this report we can identify all the error sources that result in a missed step (i.e., a violation
of SMS-Req-3). The report shows that timing errors in the form of EarlyDelivery and rate errors
in the form of HighRate can result in missed steps, while LateDelivery and LowRate result in
SlowResponse. In the next section we will quantify the amount of time for early delivery that re-
sults in a missed step as well as the deviation from the expected rate at which commands are sup-
plied. Slow response within bounds by the SMS is considered an acceptable risk for the ECS.

Figure 25: Fault Impact Report for SMS

The report also shows the impact of mechanical failures, of power loss, and of data corruption by
the direct access memory. Mechanical failures and power loss are typically identified during a
system safety analysis and the impact is as expected unless addressed by redundancy.

Data corruption is a more interesting case. Transient data corruption on the direct access memory
can be due to factors such as vibration, heat, or radiation. Such corruption leads to value errors,

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

both detectable (in that the step count value is out of range), and subtle (where the step count is
incorrect but within range or where the direction is flipped, resulting in potentially commanding
outside the acceptable range of positions and in inconsistency between the actual position and the
commanded position (SMS-Req-3)).

When performing fault impact analysis the consistency checker will flag the fact that value errors
are being propagated from the direct access memory into the connection between SM_PCS and
SM_ACT. However, SM_ACT assumes that it is not receiving any out-of-range values. In other
words, we have unhandled faults originating in the direct access memory. A possible correction of
this problem is for SM_ACT to check for out-of-range values and ignore them.

5.3 Quantified Time-Sensitive Derived Safety Requirements

In this section we quantify the fault condition for missed steps due to early delivery and mis-
matched command rate (SMS-Req-3), as well as the condition that must be met in order to assure
immediate response to new commands (SMS-Req-6). These requirements apply to any stepper
motor or other control system with a command recipient that does not buffer commands and as-
sumes a constant command stream.

5.3.1 Derived Requirement for Early Command Delivery

Early delivery of a position-change command to SM_ACT can result in a missed step if the com-
mand arrives while the step count for the previous command is non-zero. This is due to the fact
that the newly arriving command is responded to immediately by aborting the previous command
as expressed in the interface specification in Figure 12—implemented by resetting the step count
to the new command value even though the old command execution is still in progress as ex-
pressed abstractly in Figure 14.

This leads to the following condition that must be satisfied in order to avoid a missed step. The
worst-case inter-arrival time variation for commands arriving at SM_ACT must be less than the
time difference between the next frame and the latest time for a non-zero step count value, that is,
the derived requirement for the SMS implementation
SMS-Req-D1: Delta(InterarrivalTime) < StepMissBound.

The inter-arrival time variation is determined by the variation in the time at which the command is
sent by SM_PCS and variation in communication time, that is
Delta(Interarrival) = Delta(SendSM_PCS)+ Delta(Comm)

Appendix B provides a formula for the inter-arrival time variation for the specific task set execut-
ing on the ECU using the worst-case send time assumption of sending at the end of task execu-
tion. For the general case, a scheduling analyzer can provide best-case and worst-case task com-
pletion times for SM_PCS.

The value of step count is non-zero until the last step of a position-change command has been is-
sued (i.e., until (Step_Count -1) * Step_Duration). This results in a worst-case step miss bound for
the maximum acceptable variation of inter-arrival time of
StepMissBound = 25ms – ((MaxStepCount -1) * max(Step_Duration))

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

According to specifications for the nominal rate of 600 steps per second, the step duration varies
between 578 (1.730ms step duration) and a maximum of 621 steps (1.61ms step duration). Using
the maximum step duration as worst case, this results in a step miss bound of 0.78ms. Notice that
this bound is less than the minimum duration of one step.

When we compare the step miss bound against the maximum inter-arrival variation, we determine
whether the sum of communication variation, execution time variation in SM_PCS, maximum ex-
ecution time of HM, and multiples of execution time variation in HM can possibly exceed
0.78ms.

This verification constraint has been specified as a Lute theorem that interprets the relevant model
properties to determine whether the maximum inter-arrival time variation exceeds the step miss
bound. Evaluation of this theorem provides analytical evidence as to whether a missed step can
occur.

We have also generated a prototype implementation of the SMS architecture in Java. This imple-
mentation of SMS has been exercised with execution time variations as specified in the AADL
model and has resulted in missed steps. This provides further evidence that the problem of missed
steps is inherent in the original SMS design.

5.3.2 Derived Requirement for Rate Mismatch

A rate mismatch between the sender SM_PCS and the receiver SM_ACT can occur for two rea-
sons:

 SM_PCS executes at a rate faster than the specified 25ms frame rate

 SM_ACT requires more than 25ms to complete the execution of the position-change com-
mand.

SM_PCS can execute faster than 25ms if the hardware clock of the ECU operates faster. For our
case study we assume that this is not the case.

As mentioned earlier, the data sheet for the stepper motor indicates that the stepper motor’s step
duration varies between 578 and 621 steps per second when executing at the rate of 15 steps per
frame. This results in an SM_ACT completion time variation between 24.15ms and 25.95ms for
performing 15 steps.

In other words, SM_ACT potentially may execute at a lower rate than the rate at which SM_PCS
sends commands.

In a worst-case scenario, the stepper motor could continuously operate at the longest step duration
if it is caused by mechanical conditions, such as increased friction due to high temperature, falling
behind 0.95ms for every frame that executes a position-change command of 15 steps.

We observe that the completion delay is cumulative for a sequence of consecutive maximum step
count commands. Note that SM_PCS sends the maximum step count only until the desired posi-
tion is reached. A step count less than the maximum allows the stepper motor to catch up with the
SM_ACT commands and make up for the time delay.

This leads to the derived requirement for the SMS implementation
SMS-Req-D2: max(StepDuration) * MaxStepCount * max(MaxStepCountCom-
mandSequenceLength) < StepMissBound.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

It takes 16 commands (250/15) to go from a completely closed to a completely open position with
a cumulative delay of 15.2ms. This figure is still less than one frame length (25ms) but larger than
the step miss bound, leading to missed steps.

To make matter worse, the maximum step count sequence potentially can be longer. A new de-
sired position may be issued before the previous one has been reached. The new position may be
in the opposite direction from the current position. As a result, the sequence of maximum step
commands is extended. If the controller shows oscillating behavior we may face a potentially un-
bounded sequence of maximum step commands.

The condition for a rate mismatch between SM_PCS and SM_ACT has been specified as a Lute
theorem. When applied to the SMS model it will inform us whether such a rate mismatch is possi-
ble for a given range of step duration values.

5.3.3 Derived Requirement for Immediate Command Response

SM-Req-6 specifies that SMS immediately respond to a new desired-position command, even
when the previously commanded desired position has not been reached. This requirement can be
violated if the new command is queued and processed only after completion of the previous
command. In the architecture fault model we have specified by the error type alias
DelayedResponse that this is assumed not to occur.

We can validate that such behavior does not occur in two ways. First, we specify a derived re-
quirement SMS-Req-D3 reflecting acceptable delay in immediate processing is caused by queuing
ports in communication or by buffering of the command in the SM_PCS internal program logic.
We have specified a Lute theorem to determine whether the DesiredPosition command is queued
in its processing path. When applied to the original SMS model it evaluates to the condition being
satisfied.

Second, we specify a derived requirement SMS-Req-D4 of maximum the end-to-end latency for
initiating the first step of a new desired-position command. An acceptable delay is less than two
frames: one frame to accommodate sampling delay by SM_PCS and one frame to push the execu-
tion of the first step through to the stepper motor. For that purpose, we have specified an end-to-
end flow in the architecture model with a maximum expected latency (see Figure 26). End-to-end
latency analysis is used to determine whether the requirement is satisfied. End-to-end latency
analysis takes into account latency contributions by periodically sampling tasks and by aperiodic
tasks with possible queuing delays as well as worst-case task completion time and communication
time.

flows
 smcmdflow: end to end flow
 CS.flowsource -> valvecmd -> SMS.flowsink {Latency => 50 ms .. 50 ms;};

Figure 26: End-to-End Flow Specification for SMS Commands

The results of an end-to-end latency analysis on our example show that the end-to-end latency
numbers are within the expected processing delay of 50ms (see Figure 27).

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

Figure 27: End-to-End Latency for the Original Design

5.4 Analysis of the Fixed Command Send Time Solution

The fixed command send time solution uses a fixed offset from the frame for SM_PCS to send the
position-change command. This affects the architecture fault model in two ways:

 It reduces the inter-arrival time variation considerably, possibly guaranteeing a value below
the StepMissBound.

 It introduces a DelayedDelivery if SM_PCS normally completes below the specified offset.
This additional delay results in a SlowResponse behavior by the control system. The quanti-
fied increase in control lag must be assessed at the ECS for acceptability.

The fixed command send time solution does not change the derived requirement SMS-Req-D2 ad-
dressing rate mismatch. In other words, the condition for a potential missed step due to rate mis-
match is the same as for the original design.

Although DelayedDelivery introduces a delay in response time to a command, the delay is within
a frame and is accounted for by SMS-Req-D4.

5.5 Analysis of the Buffered Position-Change Command Solution

The buffered position-change command solution uses a buffer for position-change commands ar-
riving at SM_ACT. This affects the architecture fault model in the following way:

 It allows SM_ACT to accommodate for EarlyDelivery (i.e., SM_ACT becomes a sink of this
error propagation—eliminating the need for SMS-Req-D1). A queue size of one is sufficient
because only one command is sent per frame assuming no rate error.

The buffered position-change command solution changes the derived requirement SMS-Req-D2
addressing rate mismatch by increasing the threshold from StepMissBound to
StepMissBound + 25ms. However, given the potential for unbounded maximum step count
command sequences the mismatched rate problem still exists.

The buffered position-change command solution introduces a queue for commands to SM_ACT.
This queue applies only to position changes delaying its early arrival until the expected time. We
reflect this in SMS-Req-D3. From an end-to-end latency perspective the delay in response time to
a command is less than a frame and is accounted for by SMS-Req-D4.

5.6 Analysis of the Position-Commanded Actuator Design Alternative

In the position-commanded actuator design solution SM_PCS is reduced to checking the range of
the incoming desired position and to sending the desired position to the actuator every 25ms. This
affects the architecture fault model in two ways:

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

 EarlyDelivery propagation to SM_ACT results in a FastResponse propagation instead of a
MissingStepCommand.

 Similarly, HighRate propagation to SM_ACT results in a FastResponse propagation instead
of a MissingStepCommand.

This eliminates the error sources within SMS and derived requirements SMS-Req-D1 and SMS-
Req-D2 to address missed steps.

The position-commanded actuator design solution does not introduce unnecessary buffering of de-
sired position commands (i.e., SMS-Req-D3 and SMS-Req-D4 will be satisfied).

The original solution was sensitive to value corruption by the direct access memory. A corrupted
step count would result in SM_ACT commanding the stepper motor to an incorrect actual position
without the opportunity to detect and correct the error. By sending the desired position repeatedly,
SM_PCS addresses transient corruption of the commanded position. SM_ACT may temporarily
move towards an incorrect position (subtle value error) and, by checking the range, avoid out-of-
range positioning. However, assuming transient corruption, uncorrupted transfer of the desired
position in succeeding periods self-corrects the transient error. In other words, this design is resili-
ent to transient data corruption by the direct access memory.

5.7 Comparison of the SMS Designs

Table 2 presents a comparison of the four architecture design alternatives in terms of their fault
models. The first row focuses on logical failures in the SMS design, the second row describes me-
chanical failures within the SMS, the third row captures the effects of computer hardware on the
SMS, and the last row represents mechanical failures in the operational environment.

The comparison shows that the position-commanded actuator design is not sensitive to early de-
livery or high rate errors, nor is it sensitive to transient message corruption or loss, while the origi-
nal design and the two corrections are sensitive to transient data corruption. This is due to the de-
sign choice of commanding the actuator by desired position rather than by a sequence of position-
change commands. The two corrections to the missed step problem, fixed send time and buffered
command, address early delivery as a cause of missed steps, but do not address rate mismatch.

We can also see that mechanical failures affect the SMS the same way in both designs and must
be addressed at the enclosing system level (e.g., by replication of the engine control system and
the engine).

Table 2: Comparison of Architecture Design Alternatives

Missed Step Original Design Fixed Send Time Buffered Command Position Command

SMS logical
failures

EarlyDelivery
HighRate

HighRate HighRate

SMS mechani-
cal failures

ActuatorFailure Step-
perMotorFailure

ActuatorFailure Step-
perMotorFailure

ActuatorFailure Step-
perMotorFailure

ActuatorFailure Step-
perMotorFailure

Transient
comm failures

MessageCorruption
MessageLoss

MessageCorruption
MessageLoss

MessageCorruption
MessageLoss

Mechanical
failures in Op
Environment

ECUFailure
PowerLoss ValveFail-
ure

ECUFailure
PowerLoss ValveFail-
ure

ECUFailure
PowerLoss ValveFail-
ure

ECUFailure
PowerLoss ValveFail-
ure

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

The architecture fault model analysis is a good source for developing a confidence map for each
design alternative. The top-level claim of the SMS confidence map reflects a safety requirement
that the actual stepper-motor position and the position known to SMS must be consistent.

Error source specifications of system components can become potential defeaters if they impact
system properties that reflect the safety-related requirements. In the case of the stepper motor, one
example is the safety requirement stating that the fuel valve must reach the desired position. This
requirement can be violated if the SMS position control function can result in missed step com-
manding. Fault impact analysis tells us which error sources can impact the derived requirement to
command the correct number of steps.

Finally, the architecture fault model includes assumptions about the absence of certain error prop-
agations. In particular, the fault model interface specification of SM_PCS states that it is not a
source of computational errors. This claim is addressed in the confidence map.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

 Establishing Confidence in the SMS

In this section we develop confidence maps for the baseline architecture design as well as for one
of the alternative designs (the position-commanded design). We draw on the insights gained from
the architecture fault model analysis to help us identify error sources as defeaters, in particular
those that impact the operation in an undesirable manner.

6.1 Confidence Maps for SMS

The purpose of this section is twofold:

1. to show how developing a confidence map can help identify specific areas where verification
and validation (V&V) efforts should be focused for a given design

2. to show how developing confidence maps for alternative designs can help with choosing the
one that will lead to higher levels of justified confidence at a lower expenditure of scarce as-
surance resources

This section will discuss two of the candidate designs (the original design and the position-com-
manded design analyzed in the previous section) and what the confidence map for each tells us
about the system. Since the problem area being investigated is primarily in the interaction be-
tween the position control system and the actuator that drives the stepper motor for the fuel valve,
we consider only two subsystems as an architecture abstraction: the position control system for
the fuel-valve stepper motor (referred to as SM_PCS), and the stepper motor that is mechanically
connected to the fuel valve (SM). SM_PCS includes the conversion from a fuel-valve position
(represented as a percent open Desired_Position as requested by the ECS) to the position in terms
of stepper-motor steps Mechanical_Control_Position. SM includes the stepper-motor actuator
(SM_ACT in the AADL model), the stepper motor (SM_Motor), and the fuel valve. In the AADL
representation of the system these are separate components, a distinction not necessary here.

When creating confidence maps we use requirements associated with the architecture model to
establish claims. We also use the specification of faults that manifest themselves as violation of
requirements or nonfunctioning components, or the assumed absence of specific faults to identify
defeaters and assertion of their absence. The decomposition of SMS requirements into require-
ments on its subsystems as well as the derivation of requirements is reflected in the hierarchical
structuring of claims and defeaters.

The confidence map not only considers defects in the system design, but also potential hazards in
the development and verification process that may lead to reduced confidence in the presented ev-
idence that requirements have been met and defeaters have been eliminated.

6.1.1 The Stepper Motor

The components of the SM have been adequately described earlier in this report. For purposes of
the confidence map, we treat the SM as a black box consisting of those components.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

newly desired position without regard to the previously desired position. Note that this idea is not
captured by the claim C1.1, which only requires that the SM be able to reach the new position
within time T, but it is captured by the context Cx1.1a. A poorly designed SM_PCS could issue
sub-optimal commands to the SM, causing it to take time T to move to the new position even
when it was adjacent to the old one.

In addition, the context (Cx1.1a) provides a definition of what it means to satisfy the word “accu-
rately” in claim C1.1.

There are four rebutting defeaters, which say that claim C1.1 would not be true if

1. There is a malfunction in the stepper motor. This corresponds to the error source declarations
of type NoCommandSequence and NoSteps reflecting actuator failure and stepper-motor fail-
ure.

2. The stepper motor is physically incapable of reaching the position commanded within time
T-F.6 This corresponds to the SlowResponse out propagation from SM, which can be traced
back to several error sources.

3. The SM_PCS loses track of the position of the stepper motor. This corresponds to the
MissedStep out propagation of SM, which can be traced back to originating in the actuator
due to an incoming EarlyDelivery or RateError.

4. The SM_PCS does not issue the appropriate commands to the stepper motor. This corre-
sponds to StepCountOutOfRange, ResultingPositionOutOfRange, and SubtleValueError in
the position-change command sent to the actuator.

The inference rule (IR2.5) says (essentially) that if all of these defeaters can be eliminated then
the claim C1.1 is valid (but of course it is still necessary to consider any possible undercutting de-
featers that apply to the inference rule). In the following section we’ll discuss R2.3 and how it can
be eliminated. A discussion of other portions of the confidence map can be found in the Appen-
dix.

6 T-F rather than just T because the current frame might have to complete its execution before the SM can begin

to respond to a new ECS request.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

The third reason why the SM might not be finished executing the previous command by the time
the SM_PCS is ready to issue a new one is that it (the SM_PCS) did not give the SM at least F ms
to execute the previous command. This would occur if the SM_PCS did not run at the same point
in every frame (for instance late in one frame and on time in the next), resulting in an inter-arrival
time of commands to the SM of less than F. This requires more analysis than a simple inspection
of the schedule and the argument above suggests analysis using an AADL model to take into ac-
count preemption effects of other computations sharing the processor on which the SM_PCS task
is running.

Note that defeater R6.6 corresponds to the potential of MissingStepCommand due to timing or rate
errors quantified by the inter-arrival time variation and step miss bound discussed in Section 5.3
and Appendix B.

6.1.4 Using the Confidence Map to Allocate Assurance Resources

The best way to use the confidence map to determine how to allocate assurance resources is to
begin at the leaves of the confidence map. The leaves show what ultimately has to be true for the
top-level claim to be true. Looking at the details of the complete confidence map (including those
parts discussed in the Appendix), under this design, the items that must be checked to have confi-
dence in the claim that “the SM_PCS will accurately position the SM to the position most recently
requested by the ECS within time T” include

 Does the SM have sufficient reliability for the application?

 Is the SM physically capable of moving from an arbitrary position to another arbitrary posi-
tion within time T?

 Does the SM initialize to the fully closed position at startup?

 Does the SM_PCS keep track of all commands it issues to the SM?

 Is the SM always able to move the maximum number of steps requested by the SM_PCS in a
single frame within that frame?

 Is the SM_PCS scheduled at a frame rate of F?

 Is the system clock accurate enough for the application?

 Is the minimum inter-arrival time for commands to the SM less than F?

 Will the SM_PCS always issue the correct command (direction and number of steps)?

 Does the compiler compile the code correctly? Does the hardware execute the compiled code
correctly? Is it certain that the execution environment will not interfere with correct execu-
tion of the code?

 Does the link between the SM_PCS and the SM have sufficient reliability for the applica-
tion?

If all of the above points can be shown, then there should be high confidence that the SM_PCS
and SM will be able to meet the claim C1.1.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

6.2 Confidence in the Position-Commanded (“Alternate”) Design for the Stepper
Motor

During the course of this work we considered the complexity of the above design of the SM_PCS
and wondered if it could be simplified to make achieving a high level of confidence an “easier”
undertaking. “Easier” can mean several different things such as

 requiring less evidence to eliminate the set of defeaters

 requiring less time to eliminate a set of defeaters

 requiring less money to eliminate a set of defeaters

At this point in our work, determining this is somewhat subjective. In future work we hope to be
able to provide a more objective measure.

As detailed in Section 4.4.3 the alternative design that we considered in some detail requires that
the SM be implemented somewhat differently than it is currently.7 Here is a description of that al-
ternative SM. Aspects of the original design that are no longer necessary have been struck out.
Additions are shown in red.

For our purposes the stepper motor is a black box that controls a valve. The valve can be set
at N discrete positions from 0 (fully closed) to N (fully opened.) The control system for the
stepper motor takes three parameters set via a data link: s (number of steps to take), d (di
rection to move), and r (rate how fast to move). Note that the stepper motor is not com
manded to move to a particular position it is only commanded to move a certain number
of steps from its current position. The stepper motor takes a single parameter, the desired
position, via a data link and immediately begins to move to that position. If the position re-
quested is changed then the stepper motor begins to move to that position instead.

The SM does not provide feedback on the actual position of the stepper motor to the software
using it. The software must infer it, either from observation of the results of opening or clos-
ing the valve, or by keeping track of the cumulative effect of commands it issued to the step-
per motor. When the stepper motor is initialized it homes to the fully closed position.

As you can see, this is a relatively small change to the logic of the stepper motor.8 It is interesting
to see how this small change affects the confidence map.

6.2.1 Top Level

The claim C1.1 is identical in this map to that of the original map. The context Cx1.1a is also
identical. The assumption (A1.1a) reflects the change in SM design.

7 The SM is being treated as an OEM product in this report. In such a case, it may not be possible to get the

manufacturer to make such a design change. Nevertheless, this is an interesting exercise.

8 In the original design, the stepper motor would decrement a counter after each step and when it reached zero,
stop moving. In the revised design the stepper motor would decrement or increment a position variable after
each step and compare it to the desired position. When the comparison was equal it would stop moving.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

that it seems relatively easy to obtain. Eliminating some of the defeaters will take more work than
eliminating others, but the fact that the confidence map highlights them is important. It allows the
designer to identify points at which things can possibly go wrong and to intelligently make deci-
sions as to which to expend the most resources on elimination.

The alternate (position-commanded) design (at least from the point of view of the SM_PCS) has a
significantly shorter list of defeaters to eliminate, and some of the defeaters in the original design
will (subjectively) take more effort to remove than any in the alternative design. In no case should
it take more work to eliminate a defeater in the position-commanded design than in the original
design.

Figure 36: Evidence Required for the Two Designs

As mentioned before, at this point in our research we treat the measurement of the relative effort
necessary to show confidence between alternate designs subjectively. Effort can be affected either
by having to collect more evidence for one design than for the other or by having to work harder
to collect similar or identical evidence in one design than for the other.

In our two example designs, the original requires that 12 pieces of evidence be collected while the
alternative only requires seven. Furthermore the seven in the alterative design all have counter-
parts (identical or similar) in the original design. So, all else being equal, this would lead to the
conclusion that achieving confidence in the original design will require significantly more effort
than achieving it in the alternate design. The only way this conclusion would not follow would be

Evidence Original Alternate
Subjective Difficulty

Needed Evidence Original Alternate
The SM is reliable enough for the application UM6.1 UM6.1
The SM can move between arbitrary points within T-F ms. UM4.3 UM5.2
The SM homes to the closed position at start up UM7.2
The SM_PCS accurately knows where the SM is at the start of each
frame. R5.5
The SM is capable of always moving S steps within a frame R8.3
The SM_PCS is scheduled at rate F R7.6
The SM_PCS commands a position requested by the ECS within F R3.3
The actual clock accuracy conforms to calculated clock accuracy UM9.2
The AADL model shows the minimal interarrival time of the
execution of SM_PCS to be >= F. UM8.6
The SM_PCS always calculates the proper number of steps and
direction to move at each invocation R5.9
The SM_PCS properly transforms the ECS commanded position to
a position for the SM R4.5
The SM_PCS code executes properly R5.10 UM6.5
The SM runs in an appropriate execution environment UC6.10 UC5.5
The data link between the SM_PCS and the SM is of sufficient
reliability for the application UM7.11 UM8.1

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

if obtaining the identical (or similar) evidence for the alternate design was significantly more dif-
ficult than obtaining it for the original design. From reviewing the lists in the previous section it
seems clear that this would not be the case.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

 Conclusions

The purpose of this case study was to show how architecture fault modeling and analysis can be
used to diagnose a time-sensitive design error encountered in a control system and to investigate
whether proposed changes to the system address the problem. The analytical approach demon-
strates that such errors that are hard to test for can be discovered and corrected early in the life-
cycle, thereby reducing rework cost. The case study shows that by combining the analytical ap-
proach with confidence maps we can present a structured argument that system requirements have
been met and problems in the design have been addressed adequately—increasing our confidence
in the system quality.

The case study system is an SMS that is part of an engine control system. Its design had been ver-
ified with SCADE without discovering—until system integration and operational testing—the po-
tential for missed step commanding due to variation in command inter-arrival time. Two possible
solutions to the problem had been proposed.

In this case study we have combined architecture and fault modeling and analysis with confidence
arguments—drawing on a framework for software assurance and software quality improvement
[Feiler 2012]. AADL, an SAE architecture description language standard with well-defined exe-
cution and communication semantics suited for embedded software systems, has been used to iter-
atively specify the SMS architecture and its requirements. We have captured the original SMS ar-
chitecture design, both proposed corrections to the design, and a design alternative. This design
alternative eliminates error sources contributed by the position control system component SMS
without significantly increasing the complexity of the actuator by commanding the actuator with
the desired position instead of a sequence of position-change commands in the original design.

The resulting architecture model was then annotated with fault model specifications expressed in
the EMV2 annex standard to AADL. We diagnosed the timing-related problem by following a
safety analysis approach that uses the EMV2 fault propagation ontology to systematically identify
hazards and their impact on the system. This systematic analysis allowed us to identify not one,
but two time-sensitive sources for the missed step problem. The analysis also allowed us to con-
firm that an SMS requirement is to immediately respond to new position commands when previ-
ous commands are in progress. It also allowed us to assess the resilience of the different SMS de-
signs to transient data corruption by a direct access memory. It illustrates the consequences of the
architecture design decision to command the actuator by a sequence of position-change com-
mands in terms of time sensitivity and the assumption of guaranteed delivery and execution of all
commands. The time-sensitive nature inherent in the original design was not only shown analyti-
cally, but also by an auto-generated prototype implementation in Java.

The confidence map notation was used to present structured confidence arguments for the SMS
architectures. Requirements become clearly traceable claims, organized to reflect requirements
decomposition. Error sources representing potential hazards in the architecture fault model be-
come defeaters with derived safety requirements as claims, whose evidence eliminates the de-
feater. Assumptions in a contract model between components, including the absence of fault prop-
agation, are explicitly recorded. Arguments for the sufficiency of satisfying subclaims and

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

eliminating defeaters to satisfy a claim are captured in inference rules. Eliminative induction sys-
tematically establishes confidence that presented evidence addresses defeaters and claims. This
evidence can be in the form of traditional activities such as design review, code review, and test-
ing, as well as analytical results based on predictive analysis of the architecture model. Develop-
ment of such a confidence map for both the original SMS architecture and the alternative design
allowed us to illustrate the difference in effort necessary to establish confidence in qualification
and certification evidence.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

 The SMS Data Model

An instance of the AADL data component type SM_Position represents the position of the stepper
motor. The data type has been defined as two variants, expressed as the data component imple-
mentation SM_Position.PercentOpen and SM_Position.Steps. The declarations, shown in Figure
37, include properties to indicate the data representation of the value (Fixed and Integer), accepta-
ble range of values, and the measurement unit as stepper-motor steps (PercentOpen and Steps).

The specification uses the Data Model Annex standard to characterize details of the data type. The
role of this annex is to provide properties and guidance on how to map relevant information from
data models expressed in other modeling notations, for example, UML or source code, into an ar-
chitecture model expressed in AADL.

The SM_PCS commands SM_ACT to have the stepper motor execute a specified number of
steps. The command takes three parameters: the direction in which to move the stepper motor (Di-
rection: Open, Close), the number of steps to be executed (StepCount), and the rate (StepRate) at
which to execute the steps in terms of steps per frame (SPF). The design assumes that the stepper
motor can completely execute the requested number of steps in one frame duration; consequently,
the requested step count cannot exceed the number of steps that can be executed in one frame
(MaxStepCount). The Direction parameter indicates whether to move towards the maximum posi-
tion (Open) or towards zero (Close).

An instance of the AADL data component type SM_Position_Change represents the position
change being commanded, that is, the step count, step rate, and direction, and their acceptable
value ranges. As shown in Figure 37, we use the subcomponent declarations in the AADL data
component implementation to explicitly represent the fields of the position-change data record.

data SM_Position
end SM_Position;

data implementation SM_Position.PercentOpen
properties
 Data_Model::Data_Representation => Fixed;
 Data_Model::Measurement_Unit => "Percent";
 Data_Model::Integer_Range => 0 .. PCSProperties::MaxPercent;
end SM_Position.PercentOpen;

data implementation SM_Position.Steps
properties
 Data_Model::Data_Representation => Integer;
 Data_Model::Measurement_Unit => "Steps";
 Data_Model::Integer_Range => 0 .. PCSProperties::MaxPosition;
end SM_Position.Steps;

data SM_Position_Change
end SM_Position_Change;

data implementation SM_Position_Change.DataRecord
subcomponents
 StepCount: data {
 Data_Model::Data_Representation => Integer;
 Data_Model::Measurement_Unit => "Steps";

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

 Data_Model::Integer_Range => 0 .. PCSProperties::MaxStepCount;
 };
 StepDirection: data {
 Data_Model::Data_Representation => Enum;
 Data_Model::Enumerators => ("Open","Close");
 };
 StepRate: data {
 Data_Model::Data_Representation => Integer;
 Data_Model::Measurement_Unit => "Steps";
 Data_Model::Integer_Range =>
 PCSProperties::MaxStepCount .. PCSProperties::MaxStepCount;
 };
end SM_Position_Change.DataRecord;

Figure 37: SM_PCS Data Model in AADL

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

 Variation in Inter-Arrival Time

The inter-arrival time variation is determined by the variation in the time at which the command is
sent by SM_PCS and variation in communication time, that is,

Delta(Interarrival) = Delta(SendSM_PCS)+ Delta(Comm)

For this analysis we assume that the command is sent at completion time of SM_PCS, that is,
Delta(Send) = Delta(CT). Completion time for SM_PCS is determined by its execution
time on the processor, by preemption time from higher priority threads—in our example the HM
thread, and any blocking time on shared logical resources—none in our example. Variation of
completion time is

Delta(CTSM_PCS) = Max(CTSM_PCS) – Min(CTSM_PCS).

Scheduling analysis such as Rate Monotonic Analysis (RMA) determines whether a task meets its
deadline and in the process calculates worst-case completion time. In our example the task set is
simple, which leads to a simple formula for calculating the completion time variation from the
variation of execution time for the two tasks sharing the ECU.

Maximum completion time variation for SM_PCS is calculated as follows, using ET as execution
time and PT as preemption time:

Delta(CTSM_PCS) = Delta(ETSM_PCS) + Delta(PTSM_HM)

The maximum preemption time variation is calculated as follows:

Delta(PTSM_HM) = k * Delta(ETHM) + Max(ETSM_HM)

with k = Ceiling(Max(ETPCS)/PSM_HM)

As the formula shows, SM_PCS is preempted by SM_HM at least once and can be preempted
multiple times. Furthermore, SM_HM may preempt SM_PCS one additional time under maxi-
mum ET conditions compared to minimum ET conditions. Thus, the preemption time variation is
not just a multiple of SM_HM execution time variation but also includes the maximum execution
time.

Based on actual or hypothetical data for the execution time variation and communication time
variation, we can explore under what conditions this variation exceeds the maximum acceptable
inter-arrival time variation. Note that the logical SM_PCS thread may execute other control func-
tions. Thus, the worst-case variation in Min(ETSM_PCS) and Max(ETSM_PCS) is determined by the
sum of execution times of all these functions.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65

number if you will) has been incorrectly determined (R4.1). The manufacturer’s data sheet was
used as evidence of SM reliability (Ev5.1). That evidence can be undermined (UM6.1) if the ac-
tual SM doesn’t conform to the SM that was used to create the data sheet. Of course independent
tests (Ev7.1) can eliminate that defeater. We choose not to go any further (indicated by the grey
circle) but we could: for instance, we could undermine Ev7.1 by suggesting that the testing was
too limited to justify the reliability conclusion and therefore that the test results are irrelevant.

Note that the justification for eliminating the defeater R2.1 is probabilistic in nature. The Error
Model annotations can be augmented with such probabilistic data to document the data sheet as-
sumptions and to support reliability and availability predictions of ECS based on the failure prob-
abilities of its parts and external error sources.

C.1.2 Stepper-Motor Speed Defeater (R2.2)

The ability for the SM to reach an arbitrary point from an arbitrary point within the requested time
depends on its design and the values of T and F. If T and F (and S, the rate at which the stepper
motor moves, in the more general case) are inappropriately chosen with respect to this design,
then it may not be physically possible for the SM to reach the desired position no matter how effi-
ciently the SM_PCS issues commands to move it. (F comes into the calculation because the ECS
can request a new position at any time, even immediately after the SM_PCS issues a command,
and the SM_PCS won’t run again until the next frame.)

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75

References

URLs are valid as of the publication date of this document.

[AFIS 2010]
Association Française d'Ingénierie Système. Process (Engineering). 2010. http://en.wikipe-
dia.org/wiki/Process_%28engineering%29#Processes

[Blouin 2011]
Blouin, D., Senn, E., & Turki, S. “Defining an Annex Language to the Architecture Analysis and
Design Language for Requirements Engineering Activities Support,” 20–29. Model-Driven Re-
quirements Engineering Workshop (MoDRE). IEEE, 2011.

[CNSS 2010]
Committee on National Security Systems. National Information Assurance (IA) Glossary (CNSS
Instruction No. 4009). CNSS, 2010.

[Delange 2014]
Delange, J. & Feiler, P. Architecture Fault Modeling with the AADL Error Model Annex. 40th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA), August 2014.

[Delange 2014a]
Delange, Julien, Feiler, Peter, Gluch, David, & Hudak, John. AADL Fault Modeling and Analysis
Within an ARP4761 Safety Assessment (CMU/SEI-2014-TR-020). Software Engineering Institute,
Carnegie Mellon University, 2014. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=311884

[DeNiz 2012]
de Niz, Dionisio, Feiler, Peter, Gluch, David, & Wrage, Lutz. A Virtual Upgrade Validation
Method for Software-Reliant Systems (CMU/SEI-2012-TR-005). Software Engineering Institute,
Carnegie Mellon University, 2012.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10115

[Dvorak 2009]
Dvorak, Daniel L., ed. NASA Study on Flight Software Complexity (NASA/CR-2005-213912).
Office of Chief Engineer Technical Excellence Program, NASA, 2009.

[FAA 2009]
Federal Aviation Administration. Requirements Engineering Management Handbook
DOT/FAA/AR-08/32. 2008. http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-
ware/media/AR-08-32.pdf

[FAA 2009a]
Federal Aviation Administration. Requirements Engineering Management Findings Report
DOT/FAA/AR-08/34. 2008. http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-
ware/media/AR-08-34.pdf

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76

[Feiler 2009a]
Feiler P., Gluch D., Weiss K., & Woodham K. “Model-Based Software Quality Assurance with
the Architecture Analysis & Design Language.” Proceedings of AIAA Infotech @Aerospace 2009.
Seattle, Washington, April 2009.

[Feiler 2010]
Feiler, P., Hansson, J., de Niz, D., & Wrage, L. “System Architecture Virtual Integration: An
Case Study.” Embedded Real-Time Software and Systems Conference (ERTS 2010). Toulouse,
France, May 2010.

[Feiler 2012]
Feiler, P. & Gluch, D., Model-Based Engineering with AADL: An Introduction to the SAE Archi-
tecture Analysis & Design Language. Part of the SEI Series in Software Engineering series. Addi-
son-Wesley Professional, 2012 (ISBN-10: 0-321-88894-4).

[Feiler 2012a]
Feiler, Peter, Goodenough, John, Gurfinkel, Arie, Weinstock, Charles, & Wrage, Lutz. Reliability
Improvement and Validation Framework (CMU/SEI-2012-SR-013). Software Engineering Insti-
tute, Carnegie Mellon University, 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=34069

[Goodenough 2013]
Goodenough, John, Weinstock, Charles, & Klein, Ari. “Eliminative Induction: A Basis for Argu-
ing System Confidence.” International Conference on Software Engineering (ICSE 2013). San
Francisco, CA, May 2013. IEEE/ACM, 2013.

[GSN 2011]
Origin Consulting (York) Limited. GSN Community Standard: Version 1. http://www.goalstruc-
turingnotation.info/documents/GSN_Standard.pdf

[Hayes 2003]
Hayes, J. H. “Building a Requirement Fault Taxonomy: Experiences from a NASA Verification
and Validation Research Project,” 49–59. 14th International Symposium on Software Reliability
Engineering (ISSRE). Denver, CO, Nov. 2003. IEEE Computer Society Press, 2003.

[Hecht 2011]
Hecht, Myron, Lam, Alexander, & Vogl, Chris. “A Tool Set for Integrated Software and Hard-
ware Dependability Analysis Using the Architecture Analysis and Design Language (AADL) and
Error Model Annex.” 16th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS), 2011.

[ISO 2011]
International Organization for Standardization. ISO/IEC 15026-2:2011 Systems and Software En-
gineering—Systems and Software Assurance —Part 2: Assurance Case. 2011.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52926

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77

[Kelly 1998]
Kelly, T. “Arguing Safety—A Systematic Approach to Safety Case Management.” PhD diss.,
University of York, Department of Computer Science, 1998.

[Lamsweerde 2003]
Van Lamsweerde, Axel & Letier, Emmanuel. “From Object Orientation to Goal Orientation: A
Paradigm Shift for Requirements Engineering,” 4–8. Proceedings of Radical Innovations of Soft-
ware and Systems Engineering, LNCS, 2003. Springer-Verlag, 2003.

[Larson 2013]
Larson, B., Hatcliff, J. & Chalin, P. “Open Source Patient-Controlled Analgesic Pump Require-
ments Documentation,” 28–34. Proceedings of 5th International Workshop on Software Engi-
neering in Health Care (SEHC), May 2013, San Francisco, CA. ACM/IEEE, 2013.

[Leveson 2012]
Leveson, Nancy. Engineering a Safer World: System thinking Applied to Safety. MIT Press, 2012
(ISBN 9780262016629).

[McDermid 2007]
McDermid, John A. Developing Safety Critical Software: Fact and Fiction. High Integrity Sys-
tems Engineering (HISE) Seminar Series, York University, 2007.
http://www.cs.york.ac.uk/hise/seminars/McDermid13Nov.ppt

[MRL 2009]
Metaphysics Research Laboratory, Center for the Study of Language and Information. Stanford
Encyclopedia of Philosophy: Defeasible Reasoning. 2009. http://plato.stanford.edu/entries/rea-
soning-defeasible

[Paige 2009]
Paige, Richard F., Rose, Louis M., Ge, Xiaocheng, Kolovos, Dimitrios S., & Brooke, Phillip J.
“FPTC: Automated Safety Analysis for Domain-Specific Languages,” 229–242. Models in Soft-
ware Engineering. Michel R. Chaudron, ed. Lecture Notes In Computer Science 5421. Springer-
Verlag, Berlin, 2009.

[Pollock 2008]
Pollock, J. “Defeasible Reasoning,” 451–469. Reasoning: Studies of Human Inference and Its
Foundations. J. E. Adler & L. J. Rips, eds. Cambridge University Press, 2008.

[Powell 1992]
Powell, D. “Failure Mode Assumptions and Assumption Coverage,” 386–395. Digest of Papers,
Twenty-Second International Symposium on Fault-Tolerant Computing. Boston, MA, July 1992.
IEEE Computer Society Press, 1992.

[Prakken 2010]
Prakken, H. “An Abstract Framework for Argumentation with Structured Arguments.” Argument
& Computation 1, 2 (June 2010): 93–124.

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78

[Redman 2010]
Redman, David, Ward, Donald, Chilenski, John, & Pollari, Greg. “Virtual Integration for Im-
proved System Design,” 57–64. Proceedings of The First Analytic Virtual Integration of Cyber-
Physical Systems Workshop in conjunction with the Real-Time Systems Symposium (RTSS
2010). San Diego, CA, November 2010. Carnegie Mellon University, 2010. http://www.an-
drew.cmu.edu/user/dionisio/avicps2010-proceedings/proceedings.pdf

[SAE 2012]
SAE International. SAE AS-5506B:2012, Architecture Analysis & Design Language (AADL).
September 2012. Original publication in 2004.

[SAE 2011]
SAE International. SAE AS-5506/2:2011, SAE Architecture Analysis and Design Language
(AADL) Annex Volume 2: Annex B: Data Modeling Annex; Annex D: Behavior Model Annex; An-
nex F: ARINC653 Annex. 2011.

[SAE 2006]
SAE International. SAE AS-5506/1:2006, SAE Architecture Analysis and Design Language
(AADL) Annex Volume 1: Annex A: Graphical AADL Notation, Annex C: AADL Meta-Model and
Interchange Formats, Annex D: Language Compliance and Application Program Interface, An-
nex E: Error Model Annex. 2006. Revision Error Model V2 in ballot for 2014 publication.

[Walter 2003]
Walter C. & Suri, N. “The Customizable Fault/Error Model for Dependable Distributed Systems,”
1223–1251. Theoretical Computer Science 290 (2003).

[Weinstock 2013]
Weinstock, Charles, Goodenough, John, & Klein, Ari. “Measuring Assurance Case Confidence
Using Baconian Probabilities,” 7–11. Proceedings of 1st International Workshop on Assurance
Cases for Software-Intensive Systems (ASSURE) in conjunction with the International Conference
on Software Engineering (ICSE). San Francisco CA, May 2013. IEEE/ACM, 2013.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

March 2015

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Improving Quality Using Architecture Fault Analysis with Confidence Arguments

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)
Peter H. Feiler, Charles B. Weinstock, John B. Goodenough, Julien Delange, Ari Z. Klein, and Neil Ernst

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2015-TR-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This case study shows how an analytical architecture fault-modeling approach can be combined with confidence arguments to diagnose
a time-sensitive design error in a control system and to provide evidence that proposed changes to the system address the problem. The
analytical approach, based on the SAE Architecture Analysis and Design Language for its well-defined timing and fault behavior seman-
tics, demonstrates that such hard-to-test errors can be discovered and corrected early in the lifecycle, thereby reducing rework cost. The
case study shows that by combining the analytical approach with confidence maps, we can present a structured argument that system
requirements have been met and problems in the design have been addressed adequately—increasing our confidence in the system
quality. The case study analyzes an aircraft engine control system that manages fuel flow with a stepper motor. The original design was
developed and verified in a commercial model-based development environment without discovering the potential for missed step com-
manding. During system tests, actual fuel flow did not correspond to the desired fuel flow under certain circumstances. The problem was
traced to missed execution of commanded steps due to variation in execution time.

14. SUBJECT TERMS

AADL, error annex, requirements modeling, confidence maps, fault modeling, software archi-
tecture, argumentation

15. NUMBER OF PAGES

89

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

